#### 同位体分子種を含むメタノール及び アセトニトリルの低速分子線の生成 とその特性に関する研究

上智大学理工学部物質生命理工学科 A0976757 山野 基大



## 星間分子雲における低温・低圧状態でのイオンー極性分子反応の反応速度測定

シュタルク分子速度フィルターを用いて同位体分子種を 含むメタノール、アセトニトリルの低速分子線の生成実験 を行い、その特性を調べた





# 低速極性分子の生成原理 ~シュタルク効果の利用~



$$\Delta W_{\text{Stark}} = \pm \sqrt{\left(\frac{W_{\text{inv}}}{2}\right)^2 + \left(\mu |\boldsymbol{E}| \frac{MK}{J(J+1)}\right)^2}$$

電場によるシュタルク効果によって 回転エネルギーの準位が分裂



結果的に並進エネルギーが低 い分子だけを選別できる

#### 低速極性分子の生成原理 四重極電場



#### 軸方向の速度選別



遠心力とシュタルクシフトの空 間依存性から生じる中心力が 釣り合った時だけ、ガイドされる。

*△W<sub>s</sub>=シュタルクシフトエネルギー R=ガイ*ド電極の曲率半径 *r=空間座標* 



$$* \mathbf{v}_l = \sqrt{\frac{R}{m}} \left| \frac{\partial \Delta W_s}{\partial r} \right|$$

\*つまり質量が重いほど、選別される軸方向の速度は遅くなる。

#### シュタルク分子速度フィルター



#### 本研究の内容

|. 低速分子線の生成

CH<sub>3</sub>CN, CD<sub>3</sub>CN, CH<sub>3</sub>OH, CH<sub>3</sub>OD, CD<sub>3</sub>OD

- A) 飛行時間法による速度分布の決定・極性分子の特性の比較
- B) 低速分子線の数密度の決定
- C) 解離生成イオンの相対強度測定
- モンテカルロシミュレーション
  - A) 軸方向速度分布の実験との比較
  - B) 径方向速度分布の測定
  - C) 低速 CD<sub>3</sub>CN, CH<sub>3</sub>OH の回転状態分布

#### 低速CH<sub>3</sub>OHの飛行時間法測定



#### 低速CH<sub>3</sub>OHで生成されるイオン 強度の電子エネルギー依存性



| $E_e$ [eV] | CH <sub>3</sub> OH <sup>+</sup> | CH <sub>3</sub> O <sup>+</sup> | CHO <sup>+</sup> | CH <sub>3</sub> <sup>+</sup> |
|------------|---------------------------------|--------------------------------|------------------|------------------------------|
| 25         | 1                               | 0.8                            |                  |                              |
| 45         | 1                               | 1.7                            | 1.3              | 0.6                          |
| 65         | 1                               | 1.3                            | 0.9              | 1.8                          |
| 85         | 1                               | 1.4                            | 1.2              | 0.7                          |
| 105        | 1                               | 1.3                            | 1                | 1.1                          |

- 直接解離イオンCH<sub>3</sub>OH⁺と比較して、解離 生成イオンCH<sub>3</sub>O⁺の割合が常に大きい
- 低速CD₃ODでも,解離生成イオンCD₃Oの 割合が常に大きかった。
- 速度分布、密度測定では解離イオン
   CH<sub>3</sub>O<sup>+</sup> CD<sub>3</sub>O<sup>+</sup>を利用するべき

# 低速CH<sub>3</sub>CNで生成されるイオン強度の電子エネルギー依存性



| $E_e$ [eV] | CH <sub>3</sub> CH <sup>+</sup> | CH <sub>3</sub> <sup>+</sup> | CH <sub>2</sub> CN <sup>+</sup> | CHCN <sup>+</sup> |
|------------|---------------------------------|------------------------------|---------------------------------|-------------------|
| 25         | 1                               | 0.1                          | 0.3                             | 0.5               |
| 45         | 1                               | 0.1                          | 0.5                             | 0.2               |
| 65         | 1                               | 0.1                          | 0.5                             | 0.1               |
| 85         | 1                               |                              | 0.5                             | 0.2               |
| 105        | 1                               |                              | 0.5                             | 0.2               |

- 直接解離イオンの割合が常に大きい
- CD3CNでも直接電離イオンの割合が常に大きかった。
  - 速度分布、密度測定では直接電離イオン を利用するべき

### CH<sub>3</sub>CNの速度分布



| V(kV) | V <sub>peak</sub><br>(m/s) | T <sub>trans</sub><br>(K) |
|-------|----------------------------|---------------------------|
| 2.8   | 35(2)                      | 6(0.5)                    |
| 2.5   | 32(2)                      | 5(0.6)                    |
| 2.0   | 32(3)                      | 5(0.9)                    |
| 1.5   | 28(3)                      | 4(0.9)                    |
| 1.0   | 27(5)                      | 4(2.5)                    |

ガイド電圧の増加につれピーク速度が増え、 温度が上がる

#### 低速分子線の特性

|                                 | Μ     | $v_{\text{peak}}(\text{m/s})$ | T <sub>peak</sub> (K) | n(cm⁻¹)                        | V(kV) |
|---------------------------------|-------|-------------------------------|-----------------------|--------------------------------|-------|
| CH₃OH <sup>≫</sup>              | 32.04 | 26(3)                         | 2.6(3)                | <b>9.8(5)</b> ×10 <sup>3</sup> | ±2.8  |
| CH <sub>3</sub> OD              | 33.05 | 26(4)                         | 2.6(3)                | <b>2.1(1)</b> ×10 <sup>4</sup> | ±2.8  |
| CD <sub>3</sub> OD              | 36.07 | 27(5)                         | 3.3(4)                | 7.5(5)×10 <sup>3</sup>         | ±2.8  |
| CH <sub>3</sub> CN              | 41.05 | 35(2)                         | 6.1(7)                | 5.9(1)×10⁴                     | ±2.8  |
| CD <sub>3</sub> CN <sup>*</sup> | 44.07 | 35(2)                         | 6.5(7)                | 9.8(2)×104                     | ±2.8  |

赤:今回初めて低速分子の生成が確認された極性分子 ※シミュレーションとの比較を初めて行った分子

### 低速分子線の特性まとめ アセトニトリルはメタノールより質量が重いにも関わらず速度 が速い アセトニトリルの方がシュタルクシフトエネルギーが高い II. CD3CNの方がCH3CNよりも質量が重いにも関わらず速度が同じ CD3CNの方がシュタルクシフトエネルギーが高い III. CH3CDが同位体の中で一番密度が高い CH3CDがシュタルクシフトエネルギーが高い





- \*本研究で、新たにCH3OHとその同位体分子種の低速 分子線の生成に成功した。
- \* 電子衝撃による低速分子線の解離イオンの生成比率 の測定を行った。
- \* シミュレーションの結果から、双極子モーメント及び回転 定数の正確性を確認できることも分かった。