1

低速分子線の特性								
Polar Molecule	м	v _p (m/s)	T _p (K)	Т _{1D} (К) ^{%1}	n [cm⁻³]	Vs(kV)		
ND ₃	20.05	41(1)	2.0	5.1	2.7(0.6) × 10 ⁵	3.0kV		
CH ₃ CN	41.05	35(1)	3.0	6.4	8.8 (2.3) × 10 ⁴	3.0kV		
H ₂ CO	32(1)	1.8	1.6	5.5	1.4(3)×10 ⁶	2.8kV		
CD ₃ CN	44.07	37(2)	3.6		1.1(0.6)×10 ⁵	3.0kV		
CH₃OH	32.04	24(1)	1.1		2.9(1.2)×10 ⁴	3.0kV		
CD ₃ OD	35.06	23(2)	1.1			3.0kV		
CH ₃ OD	33.05	25(1)	1.2			3.0kV		
$\longrightarrow mv_p^2/2 = k_B T$								
※1 モンテカルロシミュレーションの結果と実験によって得られた速度分布の比較								
がっ元頃もられた温度 ※2ビーム拡がりによるエラーは含まれていない								

反応速度定数まとめ							
	reaction	N₂H⁺ + CH₃CN	N₂H⁺ + CD₃CN	N₂H⁺ + CH₃OF			
E_{avg} [K]	average reaction energy	3.2	3.1	2.4			
k_L [cm ³ /s]	Langevin rate	1.20E-09	1.18E-09	1.05E-09			
k_{ts} [cm ³ /s]	trajectory scaling	3.64E-08	3.79E-08	1.95E-08			
k_{LD} [cm ³ /s]	Locked dipole	7.61E-08	7.91E-08	4.07E-08			
k_{exp} [cm ³ /s]	Exp. at 300K	4.10E-09 ^[1]					
k ₀₆ [cm ³ /s]	rate06_dipole	3.97E-08 ^[2]					
<i>k</i> [cm ³ /s]	our previous work	1.7(6)E-08 ^[3]					
<i>k</i> [cm ³ /s]	present work	1.3(3)E-08	1.0(3)E-08	6.7(2)E-09			

J. Phys. Chem. Ref. Data 22, 1469-1569 (1993) [2] J. Woodall et al., A&A 466, 1197 (2007
K. Okada et al., PRA87, 043427(2013)

同位体による反応速度定数は誤差の範囲で差は見られず、また、trajectory scalingとはどれもファクター3前後の差がみられた

反応速度定数まとめ(メタノール)

CH₃OH + N₂H⁺ について

反応速度定数は6.7(2)E-09であった

k_{ts}は1.95E-08であり実験結果とは3倍ほどの違いがあった アセトニトリルと同様の傾向を示した

 $CH_3CN(1.3(3)E-08)$ と比べ2倍ほど遅い結果が得られた反応生成物 $CH_3OH_2^+(M=33)$ が得るエネルギー(~1.25eV)が $CH_3CNH^+(M=42)$ のそれ(~1.9eV)と比べ小さく、なおかつ $Ca^+(M=40)$ よりも軽いためクーロン結晶の内側にトラップされ残留している可能性がある

◆ CH₃OH₂→の固有振動を励起し、イオントラップから排除 して実験を行う

今後の課題

◆ k_{ts}との違いの傾向が一般的なものなのか他の様々な系のイオンー極性分子反応について調べる必要がある

◆メタノール+ N₂H⁺反応における同位体効果(CD₃OD、 CH₃OD)の調査(CD₃OD、CH₃ODの低速分子線は生成確認済 み)

◆ N₂H⁺をN₂D⁺として実験を行い、これまでの結果と比較

◆REMPI(共鳴多光子イオン化)によるさまざまな分子イオンの
生成法の確立(N₂⁺分子の生成に成功済み)

◆分子イオンおよび極性分子の回転温度、並進温度の制御法の 開発

40

まとめ

◆多体粒子シミュレーション専用計算機(Grape9)を利用したMDシ ミュレーションを開発し、数千個以上のクーロン結晶のシミュレーショ ンを行うことができるようになった

◆クーロン結晶中の影の体積と分子イオン数の相関が非常に高い ことが示された(過去の解析法が十分な精度であったことが確認され た)

◆ゼロ平均正規化相互相関(ZNCC)を利用して2枚のクーロン結晶 画像の相関度を数値化するプログラムを開発した

◆ $CD_3CN + N_2H^+ \rightarrow CD_3CNH^+ + N_2$ の反応速度測定を行い CH₃CNの場合と反応速度定数に同位体間で誤差の範囲では差が 見られなかったことを確認した

◆ CH₃OH分子線を生成しCH₃OH + N₂H⁺ → CH₃OH₂⁺ + N₂反応測 定を行った