

イオントラップとECRイオン源を用いた星間物理学

理工学部·物質生命理工学科 岡田邦宏

研究目的

◆ 星間分子雲における分子生成で重要な極低温分子イオン・極性分子反応の測定 極低温領域でのイオン – 分子反応は、星間分子雲における化学反応で重要な役割をしている。イオントラップ中で生成された極低温分子イオンと低 速極性分子を反応させることによって、10K以下の温度領域におけるイオン – 極性分子反応の反応速度定数の測定を行い、星間分子雲の研究に必要 な基礎データを得ることが目的である。

- \bullet
- 太陽風において観測される多価イオン・中性分子衝突による軟X線の実験室における観測とその発光断面積の決定 ECRイオン源で生成された多価イオンと原子・分子の衝突によって生じるX線を定量測定し、X線天文学にとって重要となる実験室データを得る。 測定対象となる電荷移行反応 0⁷⁺ + H → 0⁶⁺(1sn*a*) + H⁺ → 0⁶⁺(1s²) + H⁺ + h ν 発光遷移 許容遷移:0⁶⁺ 1s²p ¹P → 1s² ¹S, 禁制遷移:0⁶⁺ 1s²p ³P → 1s² ¹S (956 µs), 1s²s ³P → 1s² ¹S

極低温分子イオン-極性分子反応実験

(b)

0.5m

太陽風起源X線放射研究のための多価イオントラップ

基盤研究A「太陽風起源の禁制X遷移の実験室における観測」(平成23年~26年度、研究代表 者:田沼筆(首都大)、研究分担者・岡田邦宏(上智大)「イオントラップの開発」

電子サイクロトロン共鳴(ECR)イオン源 NANOGAN

Electron cyclotron frequency $f_c = 10 \text{ GHz} @ 0.357\text{T}$ Extraction voltage $V_{acc} = 10 \sim 20 \text{ kV}$ Ion current of Ar²⁺ : ~ µA @ Faraday cup

Kingdonイオントラップ

今後の計画

- ◆ 極低温イオン-極性分子反応測定
- Ca⁺クーロン結晶と低速極性分子CH₂0, ND₃の反応測定 極低温分子イオン-極性分子反応の系統的測定 ⇒ 星間分子雲の生成に関わる研究への貢献めざす 1 2.
- 多価イオントラップを用いたX線観測実験
 - 1.
 - Kingdonイオントラップの開発 ECRイオン源を用いた $\operatorname{Ar}^{q^+}(q=1\sim 8$)の多価イオントラップ 2