Sympathetic crystallization of CaH™* produced by laser-induced chemical reaction
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Abstract

Sympathetically crystallized molecular ions in iorps@rovide the ideal system
for precision measurements of molecular vibrationalratational transitions [1] a
well as for studying ultracold molecular ion-polar moleatdéisions [2]. The long
term measurement can be applied to the detection ofvéinetion in fundamental
physical constants, such as proton-to-electron mésging/my) [3]. Recently,
Kajitaet al., proposed a new detection scheme of the time variatiog/o, using §
vibrational transition frequency of sympatheticallystaflized CaHions [3, 4].
Here we investigated sympathetic Coulomb crystallinatfcCaH ions produced
by the laser-induced chemical reaction. By compari$oMb simulation images
with experimental image, the number of crystallized mdkr ions, the secular
temperature and the structure were determined [5]. Moréaer production rate:
and the dependence on the laser detuning were investigated.

Experimental Setup

Alinear radio frequency ion trap (linear Paul trap)sed to
simultaneously store the laser cooled atomic #86s() and the
sympathetically cooled molecular ions(CaHA compact miniature
UHV chamber enclosing the ion trap is evacuated byrapionp and a
turbo molecular pump backed by a rotary pump. The ion trap is
mounted on a cryogenic vessel containing liquid-nitrogesbtain an
ultrahigh vacuum. Neutral +fjas was introduced into the chamber vig
variable leak valve. The laser-ablation method was fmsqutoducing
and trapping Caions. A Nd:YAG pulsed laser light was focused onto
metallic calcium sample, and the laser-ablatetli@e were directly
trapped. Two grating stabilized diode lasérs 397 and 866 nm)
locked to a frequency-stabilized He-Ne laser are fmeldser cooling
of the trapped Cdons . An ion Coulomb crystal, which emits laser-
induced fluorescence (LIF) at 397 nm, is observed by @dd@CD
camera at right angles to the trap axis and by a pludtipiier tube
(PMT). The camera with the lens system and a Uetfis mounted on
a precision stage outside the vacuum chamber to adjtist bmaging
position of the Coulomb crystal. The magnification e tens system
was selected to8 or 10x according to circumstances. The CCD
exposure time is typically set to 10 s.
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As shown in the pictures, we successfully obsemead-species Coulomb crystals of‘Ca
and CaH. Due to the existence of the asymmetric directenrvoltages by the patch effect
by electric charges on the electrodes, the Qablilomb crystal was pushed to the upper si
of the image. Both of the observed*@aage and the simulated image by the molecular
dynamics simulation show that the sympatheticatigled CaH ions were also crystallized.
From the simulation results, the number of cryatetl molecular ions, the secular
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We observed a single Caién in a small CaCoulomb
crystal. As shown in (a), fluorescence of Caystals have
perforated structure. The Calén exists in the dark spots.
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temperature and the structure was determined [5] From the ol at differext, the

mixed-species Coulomb crystals was observed.
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From the comparison of MD simulation images with
experimental image, the number of small Coulomb
crystals(10~100) was determined. On the other haftus
number of large Coulomb crystals(1000~10000) wémated
by the product of calculated ion density and Codlarystal's
volume.

The number of Caions decayed exponentially with the
reaction time due to the laser-induced reactiore fEaction rates
were determined using a least-squares fit techniape the lower
limit of the reaction rate constant at room tempeEawas
deduced.

In the case of the large ion crystal (a), the deess of Caions
was accelerated after 350 s, because the numbeplaint Ca
ions decreased while the number of Cas increased.
Accordingly, for the least-squares fitting analysis selected the
data which were mesured at a reaction time less 358 s.

The laser-detuning dependence of the reactios vats also
measured for large and small ion crystals. At traeslaser
detuning the reaction rates of small Coulomb clysteas higher
than those of large crystals. This result showesfalt that the
smaller ion crystals are cooled to the lower terupees.
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Outlook

Next step

+Production of various ultracold ion:
— CaO, CaOH, F, NHs*etc...

Applying correction DC voltages
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Future

+Ultrahigh-resolution molecular spectroscopy
+ Study of ultracold molecular ion-polar molecule collisi@actions
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