Development of a Stark velocity filter for studying cold ionpolar molecule reactions

<u>K. Okada</u>, N. Kimura, T. Suganuma, T. Furukawa, K. Shiina, M. Wada ^{A)}, H. A. Schuessler ^{B)}

Department of Materials and Life Sciences, Sophia University ^{A)}Nishina Center for Accelerator-Based Science, RIKEN ^{B)}Department of Physics, Texas A&M University

Background and Motivation

1. Ion-polar molecule reactions play important roles in synthesis of interstellar molecules

→ It is necessary to understand ion-polar neutral systems, before more definitive conclusions can be reached for chemical evolution in dark interstellar clouds usin "UMIST" data base (Wakelam et al. A&A 2006)

2. There are only a small number of experimental reaction-rate constants measured at low temperatures.

→ Benchmark data to test the scaling formula of the capture rate in ion-polar molecule collisions and other quantum chemical calculations

Capture rate by "trajectory scaling approach" based on classical trajectory technique^{*}

$$k_{cap} = 2\pi e [0.62 + 0.4767x] \sqrt{\alpha/\mu}, \quad x \equiv \mu_D / \sqrt{2\alpha k_B T} \ge 2$$

(α : polarizability, μ : dipole moment, T: temperature, k_B : Boltzmann constant)

%T. Su & W. J. Chesnavich, JCP1982

Previous studies

- □ T. Baba *et al.* " Chemical reaction between sympathetically cooled molecular ions and NH_3 : $H_3O^+ + NH_3 \rightarrow NH_4^+ + H_2O$ " (JCP 2002)
- □ G. Rempe *et al.* "First demonstration of Stark velocity filter to produce slow polar molecules " (PRA 2004)
- **T.** P Softley *et al.* "Reaction rate measurement between Ca⁺ Coulomb crystal and cold CH_3F " (PRL 2008)
- S. Willitsch *et al.*, " Preliminary reaction rate measurement between slow ND₃ and sympathetically cooled OCS⁺ ions " (Faraday Discuss. 2009)

We are now developing a new apparatus composed of a Stark velocity filter and cryogenic linear ion trap.

Extension in this study

- 1. Many kinds of cold molecular ions will be supplied by sympathetic laser cooling $\rightarrow CaH^+$, CaF^+ , N_2^+ , CH_2O^+ , ND_3^+ ...
- 2. Many kinds of slow polar molecules will be supplied.

formula	name	μ[D]	formula	name	μ[D]
NH ₃	ammonia	1.468(c)	CH ₃ NO ₂	nitromethane	3.46
ND ₃	de uterated ammonia	1.5(c)	C ₆ H₅NO ₂ [≫]	nitrobenzene	4.21
CH ₂ O	formaldehyde	2.34(a)	C₂H₅OH	ethanol	1.69
CD₂O [⋊]	de uterated formaldehyde	2.34(a)	CH₃OH	methanol	1.66
H ₂ O	water	1.82(a)	CH₃COCH₃	acetone	2.9
D ₂ O	deuterium oxide	1.85(a)	CH ₂ F ₂	difluoromethane (freon 41)	1.96(b)
HDO	de uterium protium oxide	0.66(a) 1.73(b)	CH₃F	fluoromethane (freon 23)	1.86(a)
CH₃CN	a cetonitrile methyl cyanide	3.92	CH₃CHO [※]	acetaldehyde	2.7

Overview of experimental setup

Stark velocity filter

Detection vacuum chamber

Linear Paul trap

cold plate (70 K)

overview of the detection chamber

Time-of-flight measurement of slow ND₃ molecules

• Velocity distribution $f(v) = \frac{L}{v^2} \left(\frac{dI(t)}{dt} \right), \quad t = L/v$

L: flight distance

• Gompeltz function $I(t) \propto \exp[-\exp[-k(t-t_c)]]$

asymmetric growth curve

I(t) well reproduce TOF signal*

XM. T. Bell et al., Faraday Discuss.142, 73 (2009)

Velocity distribution

Number density of slow ND₃

ND₃ gas was intentionally leaked from the variable leak valve.

TOF signals of CH₂O and CH₃CN

CH₃CN @ 32±1mTorr, 295K

The slowest peak velocity corresponds to a thermal energy of a few Kelvin.

Summary of production of slow polar molecules

nozzle temperature:295 K

molecule	M	v _{peak} (m/s)	T _{peak} (K)	$n_{\rm max}({\rm cm}^{-3})$
ND ₃	20.05	23 ~ 40	1.3 ~ 3.8	9 × 10 ⁵
CH ₂ O	30.03	23 ~ 32	1.9 ~ 3.7	1.3 × 10 ⁶
CH ₃ CN	41.05	23 ~ 34	2.6 ~ 5.7	1.2×10^{5}
NH ₃	17.03	36.5	2.7	2×10^{5}

Cold ion-polar molecule reactions: $k = 10^{-8} \sim 10^{-9}$ (cm³/s)

Expected reaction-rate : 10⁻² ~ 10⁻³ /s

Simulation of Stark velocity filter

- Information of the transverse velocity distribution and the actual "cut-off" velocity
- Rotational state distribution
 of guided slow molecules
- Spatial dispersion of a slow molecular beam after passing through the beam guide (beam profile)

Trajectory of a slow ND₃

Transverse velocity distribution

Summary

- Stark velocity filter and cryogenic linear ion trap have been completed.
- Slow polar molecules (ND₃, NH₃, CH₂O, CH₃CN) with a thermal energy of a few Kelvin have been produced.
- Determination of the number density of the slow polar molecules has been conducted.
- Monte-Carlo simulation code has been developed for characterization of Stark velocity filter.