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ABSTRACT

The enhancement factor of resonant thermonuclear reaction rates is calculated for extremely dense stellar
plasmas in the liquid phase. In order to calculate the enhancement factor we use the screening potential
deduced from the numerical experiment of the classical one-component plasma. It is found that the enhance-
ment is tremendous for white dwarf densities if the 12Cþ 12C fusion cross sections show resonant behavior in
the astrophysical energy range.We summarize our numerical results by accurate analytic fitting formulae.

Subject headings: dense matter — nuclear reactions, nucleosynthesis, abundances — plasmas
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1. INTRODUCTION

In a recent important paper, Cussons, Langanke, &
Liolios (2003) have pointed out potential resonant
screening effects on stellar 12Cþ 12C reaction rates. The
12Cþ 12C fusion cross sections show noticeable resonant
structures down to the lowest energies measured so far in
the laboratory, E � 2:4 MeV (Kettner, Lorenz-Wirzba, &
Rolfs 1980). If the resonant structure continues to even
lower energies and the astrophysical reaction rate is due
to the contributions of narrow resonances, one then has
to consider that the entrance channel width of these
resonances will be modified in the plasma.

Cussons et al. (2003) have specifically pointed out the
possible importance of plasma effects on resonant 12Cþ 12C
reactions for a carbon white dwarf environment with
T ¼ 5� 107 K and � ¼ 2� 109 g cm�3. They have consid-
ered a resonance energy interval 0.4–2 MeV. They have
specifically discussed a rather extreme case of the low reso-
nance energy Er ¼ 400 keV and have estimated the overall
enhancement of the resonant 12Cþ 12C reaction rates due
to plasma effects for this case.

Cussons et al. (2003) adopted the method of Salpeter &
Van Horn (1969), which is based on the lattice model of
dense plasma, to calculate the resonant screening effects.
One of us (N. I.) and collaborators have calculated the
enhancement of nonresonant thermonuclear reaction rates
in extremely dense stellar plasmas (Itoh, Kuwashima, &
Munakata 1990). This work is a natural extension of the
works of Itoh, Totsuji, & Ichimaru (1977) and Itoh et al.
(1979), and improves on the accuracy of the results of
Salpeter & Van Horn (1969). Itoh et al. (1990) have
summarized their numerical results in an accurate analytical
fitting formula, which will be readily implemented in stellar
evolution computations.

The aim of the current paper is to extend the work of Itoh
et al. (1990) to the case of resonant reactions. This paper is
organized as follows. Physical conditions relevant to the
present calculation are made explicit in x 2. Calculation of
the enhancement factor of resonant thermonuclear reaction

rates is summarized in x 3. The results are presented in x 4.
An extension to the case of ionic mixtures is made in x 5.
Concluding remarks are given in x 6.

2. PHYSICAL CONDITIONS

First we consider thermonuclear reactions that take place
in the plasma in thermodynamic equilibrium at temperature
T, composed of one kind of atomic nuclei and electrons with
number densities ni and ne, respectively; Ze and M denote
the electric charge and the mass of such an ion. The conven-
tional parameters that characterize such a plasma are

� ¼ Zeð Þ2

akBT
¼ 0:2275

Z2

T8

�6
A

� �1=3
; ð1Þ

� ¼ 27�2

4

� �
MðZeÞ4

�h2kBT

" #1=3
; ð2Þ

where a is the ion sphere radius a ¼ ð4�ni=3Þ�1=3, A is the
mass number of the nucleus, T8 is the temperature in units
of 108 K, and �6 is the mass density in units of 106 g cm�3. In
this paper we restrict ourselves to the case in which electrons
are strongly degenerate. This condition is expressed as

T5TF ¼ 5:930� 109

� 1þ 1:018ðZ=AÞ2=3�2=36

h i1=2
�1

� �
K ; ð3Þ

where TF is the electron Fermi temperature. Furthermore,
we consider the case in which the ions can be treated
approximately as classical particles. The corresponding con-
dition is written as

ni�
3 � 1 ; ð4Þ

where � ¼ ð2��h2=MkBTÞ1=2 is the thermal de Broglie wave-
length of the ions. Equation (4) is rewritten as

T8 � 2:173�
2=3
9 =A5=3 ; ð5Þ

where �9 is the mass density in units of 109 g cm�3. In this
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paper we impose a further condition that the ions are in the
liquid state (Slattery, Doolen, &DeWitt 1982),

� < 178 : ð6Þ

The parameter 3�=� corresponds to the ratio of the classi-
cal turning point radius at the Gamow peak and the mean
inter-ionic distance in the case of pure Coulomb potential
(Itoh et al. 1977; Alastuey & Jancovici 1978). The theories
of Itoh et al. (1977), Itoh et al. (1979), and also Alastuey &
Jancovici (1978) are valid under the condition 3�=� � 1:6.
Itoh et al (1990) have extended the calculation of the
enhancement of the nonresonant thermonuclear reaction
rates to the case 3�=� � 5:4. In Figure 1 we show the
density-temperature diagram of the pure 12C plasma, which
illustrates the physical conditions described in this section.

3. ENHANCEMENT OF THE RESONANT
THERMONUCLEAR REACTION RATES

In this paper we use the following screening potential for
the classical one-component plasma:

HðrÞ ¼ CkBT � Z2e2

a

1

4

r

a

� �2
�b

r

a

� �4� �
;

0 � r � r0 ; ð7Þ

HðrÞ ¼ Z2e2

a
1:25� 1:25

2

� �2
r

a

" #
;

r0 � r � 1:60a ; ð8Þ
C ¼ 1:0531�þ 2:2931�1=4 � 0:5551 ln�� 2:35 : ð9Þ

This screening potential is derived from the equilibrium pair
correlation function of the classical one-component plasma.
In adopting this screening potential, our standpoint is the
same as that of Alastuey & Jancovici (1978). They have
argued that the pair correlation function should be taken as
the static one. The point is that the transmission coefficient
of the potential barrier is exceedingly small, which makes
nuclear reactions very rare events. In a loose classical anal-
ogy, one might say that, in most collisions, the colliding par-
ticles tunnel through only a certain distance and are then
reflected back. Therefore, as soon as r is larger than a few
nuclear diameters, equilibrium is achieved and the probabil-
ity of finding two nuclei at a distance r from one another is
given by the equilibrium pair correlation function. Thus,
one can use the averaged potential in describing the tunnel-
ling. More recently, DeWitt (1994), Rosenfeld (1994), and
Isern & Hernanz (1994) have studied this problem. They
have essentially confirmed the correctness of the method of
Alastuey & Jancovici (1978) on which our work is based.
Similar work addressing the case of solar fusion reactions
has been recently carried out by Bahcall et al. (2002), essen-
tially confirming the soundness of the method of the average
potential.

We also remark in relation to the above-stated point that
the nuclear reactions as a whole are taking place on a mac-
roscopic timescale, whereas the screening potential is kept
in equilibrium on amicroscopic timescale.

We here remark on the validity of the classical one-
component plasma (OCP) model. In the interior of dense
stars the electron Fermi energy becomes much larger
than the Coulomb interaction energy between the elec-
tron and the ion. Therefore, the electron liquid becomes
an almost uniform liquid. Owing to this fact, the interior
of dense stars can be satisfactorily described by the OCP
model, which consists of point ions embedded in the
rigid background of electrons. Of course, at the same
density the OCP model becomes better for the smaller
ionic charge Z, as the ratio of the electron-ion interaction
energy to the electron Fermi energy becomes smaller for
smaller Z.

The expression for C is taken from Alastuey & Jancovici
(1978). The two segments of the screening potential are
matched at r ¼ r0, so that the screening potential and its
derivative are a continuous function with respect to the dis-
tance r. This procedure produces solutions for r0 and b for
the range of C values 4 � � � 90. Outside this range we use
the value of b that makes equations (7) and (8) continuous
at r ¼ 1:171875a. In this case the first derivatives of equa-
tions (7) and (8) are slightly discontinuous at this point. The
linearly decreasing part of the screening potential is identi-
cal to that employed by Itoh et al. (1977) and also by Itoh et
al. (1979). The screening potential of equations (7) and (8)
fits the results of the numerical experiments excellently. (See
Fig. 1 of Itoh et al. 1979 for the accuracy of this screening
potential in reproducing the results of the Monte Carlo
computations.) Note that this screening potential exactly
cancels the Coulomb potential Z2e2=r at r ¼ 1:60a. We fur-
ther assume that the potential of mean force vanishes for
r � 1:60a. Given the explicit form of the screening potential,
we are now in a position to calculate the enhancement of the
resonant thermonuclear reaction rates.

A single resonance in the cross section of a nuclear reac-
tion, 0þ 1�!2þ 3, can be represented most simply as a
function of energy in terms of the classical Breit-Wigner
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Fig. 1.—Physical conditions for the pure 12C plasma. The present calcu-
lation is valid in the region bounded by the electron Fermi temperature TF

and the line ni�3 ¼ 1. Furthermore, the ions should be in the liquid state,
� < 178. The lines of � ¼ const, � ¼ const, and 3�=� ¼ const are shown.
[See the electronic edition of the Journal for a color version of this figure.]
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formula (Fowler, Caughlan, & Zimmerman 1967),

� ¼ ��h2

2lE

!r�1�2

ðE � ErÞ2 þ �2
tot=4

; ð10Þ

where l is the reduced mass, E is the center-of-mass energy,
Er is the resonance energy, !r is the statistical weight factor,
�1 is the partial width for the decay of the resonant state by
re-emission of 0þ 1, �2 is the partial width for emission of
2þ 3, and �tot ¼ �1 þ �2 þ . . . is the sum over all partial
widths. The partial width �1 is proportional to the barrier
penetration factor PðEÞ for the screened Coulomb
potential.

�1 / PðEÞ ¼ exp � 2
ffiffiffiffiffiffi
2l

p

�h

Z rtp

0

VðrÞ � E½ �1=2 dr
� �

; ð11Þ

VðrÞ ¼ Z2e2

r
�HðrÞ ; ð12Þ

where rtp is the classical turning point radius, which satisfies
the condition

VðrtpÞ � E ¼ 0 : ð13Þ

We consider the case in which the resonance is sharp; that
is, the full width at resonance, �r, is considerably smaller
than the effective spread in energy of the interacting
particles. We further consider the case �15�2, �tot � �2.
Cussons et al. (2003) have pointed out that for 12Cþ 12C
resonances far below the height of the Coulomb barrier, the
entrance channel width �1 is much smaller than the total
resonance width. The latter (which is of the order of �100
keV for the observed resonances above 2.4 MeV) is also
noticeably smaller than the resonance energy. In this case
we have (Fowler et al. 1967)

h�vi ¼ 2��h2

lkBT

 !3=2
ð!�Þr
�h

exp � Er

kBT

� �
; ð14Þ

ð!�Þr ¼ !r�r ¼
!�1�2

�tot

� �
r

� ð!�1Þr : ð15Þ

Therefore, the partial width �1 in equation (11) is to be eval-
uated at the resonance energy E ¼ Er. Here we note that the
resonance energy is shifted by the plasma effects. We take Er

to be the shifted resonance energy. The shifted resonance
energy Er is related to the resonance energy in the vacuum
E0
r by the relationship

Er ¼ E0
r � CkBT ; ð16Þ

where the expression forC is given by equation (9).
The barrier penetration factor P0ðEÞ for the pure

Coulomb potential Z2e2=r of the identical nuclei is known
to be

P0ðEÞ ¼ exp �2
a

�h2=MZ2e2

 !1=2
�

2

1ffiffi
�

p

2
4

3
5 ; ð17Þ

� ¼ aE

Z2e2
: ð18Þ

Therefore, the enhancement factor � of the resonant ther-
monuclear reaction rates that arises because of the plasma

screening effects is

� ¼ exp

(
� 2

a

�h2=MZ2e2

 !1=2
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2

1ffiffiffiffi
�0r

p þ Jð�; �rÞ
" #)

expðCÞ ; ð19Þ

Jð�; �Þ ¼
Z xtp

0

1

x
� hðxÞ � �

� �1=2
dx ; ð20Þ

hðxÞ ¼ a

Z2e2
HðrÞ ; ð21Þ

x ¼ r

a
; xtp ¼ rtp

a
; ð22Þ

�0r ¼
aE0

r

Z2e2
; �r ¼

aEr

Z2e2
¼ �0r �

C

�
: ð23Þ

Here we note that our method is valid for �r ¼ �0r�
C=� � 0:

Since we have (Itoh et al. 2002)

a ¼ 0:7346� 10�10 �6
A

� ��1=3

cm ; ð24Þ

we can rewrite equation (19) as

� ¼ exp

(
� 1:004� 101ZA2=3�

�1=6
6

� � �

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r þ C=�

p þ Jð�; �rÞ
" #)

expðCÞ

� exp �1:004� 101ZA2=3�
�1=6
6 Kð�; �rÞ

h i
expðCÞ : ð25Þ

We also have a useful relationship

Z2e2

a
¼ 1:960� 10�3Z2 �6

A

� �1=3
MeV : ð26Þ

This gives Z2e2=a ¼ 0:308 MeV and 1:004� 101ZA2=3�
�1=6
6

¼ 99:85 forZ ¼ 6,A ¼ 12, and � ¼ 109 g cm�3.

4. RESULTS

We have carried out the numerical integration of Jð�; �Þ
in equation (20) for various values of C and �. In Figure 2 we
show the function Jð�; �Þ as a function of � for various val-
ues ofC. In Figure 3 we show the functionKð�; �rÞ as a func-
tion of �r for various values of C.

In order to facilitate the application of the numerical
results obtained in the current paper, we present an accurate
analytic fitting formula for Kð�; �rÞ. We have carried out
the numerical calculations of Kð�; �rÞ for 1 � � � 200 and
0 � �r � 10.We express the analytic fitting formula by

log10 Kð�; �rÞ ¼
X10
i;j¼0

aijg
iuj ; ð27Þ

g � 1

1:1505
log10 �� 1:1505ð Þ ; ð28Þ

u � 1

5:0
�r � 5:0ð Þ : ð29Þ
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The coefficients aij are presented in Table 1. The accuracy of
the fitting is generally better than 0.1%.

5. IONIC MIXTURES

Itoh et al. (1979) analyzed the results of the Monte Carlo
computations for the screening potentials of the ionic

mixtures of various charge ratios and concentration ratios
carried out by them and also by Hansen, Torrie, & Vieille-
fosse (1977). They have established that the screening poten-
tial at intermediate distances HijðrÞ for a mixture of two
kinds of ions with charges and number densities ðZ1e; n1Þ
and ðZ2e; n2Þ given below fits the Monte Carlo results
excellently within the inherentMonte Carlo noise:

HijðrÞ
kBT�ij

¼ 1:25� 0:390625
r

ðai þ ajÞ=2
ði; j ¼ 1; 2Þ ; ð30Þ

�ij ¼
ZiZje2

ð1=2Þðai þ ajÞkBT
ði; j ¼ 1; 2Þ ; ð31Þ

a1 ¼
3Z1

4�ðZ1n1 þ Z2n2Þ

� �1=3
; ð32Þ

a2 ¼
3Z2

4�ðZ1n1 þ Z2n2Þ

� �1=3
: ð33Þ

We also define the parameter

�ij ¼
27�2

4

� �
2lijZ

2
i Z

2
j e

4

�h2kBT

" #1=3
ði; j ¼ 1; 2Þ ; ð34Þ

where lij is the reduced mass for the two ions with charges
Zi and Zj . Then the enhancement factor for the resonant
thermonuclear rates of the two nucleiZi andZj is given by

� ¼ exp

(
� 2

ðai þ ajÞ=2
�h2= 2lijZiZje2
� �

2
4

3
5
1=2

� � �

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r þ Cij=�ij

p þ Jð�ij; �rÞ
" #)

expðCijÞ

� exp �2
ðai þ ajÞ=2

�h2= 2lijZiZje2
� �

2
4

3
5
1=2

Kð�ij ; �rÞ

8><
>:

9>=
>; expðCijÞ ;

ð35Þ

�r ¼
1

2

ðai þ ajÞEr

ZiZje2
¼ 1

2

ðai þ ajÞE0
r

ZiZje2
� Cij

�ij
; ð36Þ

Cij ¼ 1:0531�ij þ 2:2931�
1=4
ij � 0:5551 ln�ij � 2:35 : ð37Þ

The analytic fitting formula for this case Kð�ij; �rÞ has the
same form as equations (27)–(29).

6. CONCLUDING REMARKS

We have presented a calculation of the enhancement of
the resonant thermonuclear reaction rates for extremely
dense stellar plasmas. The calculation has been carried out
by adopting the screening potential derived from the Monte
Carlo computations of the classical one-component plasma.
We have summarized our numerical results by an accurate
analytic fitting formula to facilitate applications. The
present results will be useful if the 12Cþ 12C fusion reaction
contains narrow resonances in the astrophysical energy
range.
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TABLE 1

Coefficients aij

i j= 0 j=1 j= 2 j= 3 j=4 j=5

0................ �3.65927E+0 �1.26734E+0 6.07584E�1 6.30602E�2 �7.78163E�1 �1.79849E+0

1................ 1.55574E�3 �4.55740E�3 2.58322E�2 7.00779E�2 �2.64033E�1 �3.01686E�1

2................ 6.20281E�3 �1.79841E�2 1.04425E�1 2.79543E�1 �1.07405E+0 �1.21880E+0

3................ �7.53523E�4 3.65732E�2 �2.62102E�1 �7.31969E�1 2.74892E+0 3.19750E+0

4................ 1.18877E�2 1.11979E�2 �1.05106E�1 �4.62001E�1 1.32482E+0 2.26167E+0

5................ �4.10209E�2 �9.73313E�2 8.96704E�1 2.55956E+0 �9.59895E+0 �1.13011E+1

6................ 1.89159E�2 5.88188E�2 �5.47015E�1 �1.22948E+0 5.38904E+0 4.80222E+0

7................ 5.10796E�2 1.10523E�1 �1.09263E+0 �2.99190E+0 1.16478E+1 1.32623E+1

8................ �4.26759E�2 �1.08244E�1 1.02972E+0 2.53992E+0 �1.04973E+1 �1.05685E+1

9................ �1.97340E�2 �4.38567E�2 4.51951E�1 1.19137E+0 �4.79595E+0 �5.30281E+0

10.............. 2.00491E�2 5.10687E�2 �4.93422E�1 �1.22559E+0 5.06476E+0 5.18690E+0

i j= 6 j=7 j= 8 j= 9 j=10

0................ 3.53738E+0 2.90085E+0 �4.98720E+0 �1.80622E+0 2.62678E+0

1................ 8.84245E�1 4.72177E�1 �1.18370E+0 �2.24453E�1 5.27141E�1

2................ 3.62099E+0 1.92629E+0 �4.87413E+0 �9.25366E�1 2.18368E+0

3................ �9.25572E+0 �5.12232E+0 1.25061E+1 2.53278E+0 �5.66738E+0

4................ �4.95541E+0 �4.03418E+0 7.40638E+0 2.26404E+0 �3.72743E+0

5................ 3.24488E+1 1.84055E+1 �4.41392E+1 �9.35145E+0 2.02577E+1

6................ �1.70172E+1 �6.83208E+0 2.14258E+1 2.91262E+0 �8.99871E+0

7................ �3.92927E+1 �2.16796E+1 5.33707E+1 1.10456E+1 �2.44789E+1

8................ 3.41813E+1 1.61786E+1 �4.46244E+1 �7.64260E+0 1.95906E+1

9................ 1.61526E+1 8.69953E+0 �2.19164E+1 �4.44246E+0 1.00465E+1

10.............. �1.66155E+1 �8.08293E+0 2.18847E+1 3.90128E+0 �9.71024E+0
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