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ABSTRACT

We calculate the screening corrections to the electron capture rates in dense

stars by the relativistically degenerate electron liquid. In order to calculate the

screening corrections we adopt the linear response theory which is widely used

in the field of solid state physics and liquid metal physics. In particular, we

use the longitudinal dielectric function for the relativistically degenerate electron

liquid derived by Jancovici. We calculate the screening potential at the position

of the nucleus. By using this screening potential one can calculate the screening

corrections to the electron capture rates. We will present accurate analytic fitting

formulae which summarize our numerical results. These fitting formulae will

facilitate the application of the present results. The screening corrections to the

electron capture rates are typically a few percent.

Subject headings: nuclear reactions: electron captures — stars: interiors
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1. INTRODUCTION

Since the pioneering works of Fuller, Fowler, & Newman (1980, 1982a, 1982b, 1985),

calculations of stellar weak-interaction rates have entered an era of precision science. More

recently an authoritative work of Langanke & Martinez-Pinedo (2000) on this subject ap-

peared.

Since the presupernova stellar evolution and stellar nucleosynthesis critically depend on

the details of the stellar weak-interaction rates (e.g., Wanajo et al. 2002), it is extremely

important to calculate accurately the screening corrections to the electron capture rates in

dense stars by the relativistically degenerate electron liquid.

This problem has been already addressed by many authors (Couch & Loumos 1974;

Takahashi, El Eid, & Hillebrandt 1978; Gutierrez et al. 1996; Luo & Peng 1996; Bravo &

Garcia-Senz 1999). The plasma effects on the chemical potential of the nucleus and hence on

the threshold energy for the electron capture, in particular, have been discussed by Couch

& Loumos (1974), Gutierrez et al. (1996), as well as by Bravo & Garcia-Senz (1999).

In this paper we will address ourselves to the calculation of the effective potential energy

felt by the relativistically degenerate electron. We will use the linear response theory in order

to calculate the screening potential caused by the relativistically degenerate electron liquid.

The present paper is organized as follows. In § 2 we will calculate the effective potential

energy felt by the electron using the longitudinal dielectric function of the relativistically de-

generate electron liquid derived by Jancovici (1962). We will thereby calculate the screening

potential which will be used for the calculation of the screening corrections to the electron

capture rates. In § 3 we will summarize the numerical results in the form of analytic fitting

formulae which will facilitate the application of the present results. We will give concluding

remarks in § 4.

2. SCREENING OF THE COULOMB POTENTIAL BY THE

RELATIVISTICALLY DEGENERATE ELECTRON LIQUID

The Coulomb corrections to the beta decay rates have been discussed in many standard

textbooks on beta decay (e.g., Morita 1973). Some authors (Takahashi, El Eid, & Hillebrandt

1978; Fuller, Fowler, & Newman 1980) have discussed possible importance of the screening

effects on the electron capture rates at extremely high densities. Therefore, it is extremely

important to calculate accurately the screening corrections to the electron capture rates by

the relativistically degenerate electron liquid.
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We consider the density-temperature regime in which the electrons are strongly degen-

erate. This condition is expressed as (Itoh et al. 1983)

T � TF = 5.930 × 109

[

{

1 + 1.018(Z/A)2/3ρ
2/3

6

}1/2

− 1

]

[K] , (2.1)

where TF is the electron Fermi temperature, ρ6 is the mass density in units of 106 g cm−3, and

Z and A are the atomic number and mass number of the nucleus considered, respectively.

We assume complete pressure ionization. Therefore, no bound electrons will exist around

the nucleus. This assumption is valid when the following condition is satisfied (Itoh et al.

1996):

Z

A
ρ ≥ 0.378 Z3 [g cm−3] , (2.2)

where ρ is the mass density.

The potential energy of the electron due to the pure Coulomb potential −Ze2/r is

changed to V (r) because of the screening by the relativistically degenerate electron liquid.

In this paper we use the static longitudinal dielectric function due to the relativistically

degenerate electron liquid calculated by Jancovici (1962) based on the relativistic random-

phase approximation. Jancovici’s static longitudinal dielectric function is written in the form

(Itoh et al. 1984)

ε(q, 0) = 1 +

(

2

3π2

)2/3
rs

q2

[

2

3
(1 + x2)1/2 −

2q2x

3
sinh−1x

+ (1 + x2)1/2
x2 + 1 − 3q2x2

6qx2
ln

∣

∣

∣

∣

1 + q

1 − q

∣

∣

∣

∣

+
2q2x2 − 1

6qx2
(1 + q2x2)1/2 ln

∣

∣

∣

∣

q(1 + x2)1/2 + (1 + q2x2)1/2

q(1 + x2)1/2 − (1 + q2x2)1/2

∣

∣

∣

∣

]

, (2.3)

q =
k

2kF
, (2.4)

x =
~kF

mec
=

1

137.036

(

9π

4

)1/3

r−1

s , (2.5)

rs =
ae

~
2

mee2

= 1.388 × 10−2

(

A

Zρ6

)

1/3

, (2.6)

4

3
πa3

e ne = 1 , (2.7)

where ne is the electron number density. The electron Fermi wavenumber is expressed as

kF = 2.613 × 1010

(

Z

A
ρ6

)

1/3

[cm−1] . (2.8)
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The ion-sphere radius ai is written as (Itoh & Kohyama 1993)

4

3
πa3

i ni = 1 , (2.9)

ai = 0.7346 × 10−10

(ρ6

A

)

−1/3

[cm] , (2.10)

where ni is the ion number density. We also have the relationship

kFai =

(

9π

4

)1/3

Z1/3 . (2.11)

The potential energy of the electron V (r) which takes into account the screening by the

relativistially degenerate electron liquid is written as

V (r) = −
Ze2

2π2

∫

ei~k·~r

k2 ε(k, 0)
d3k

= −
Ze2(2kF )

2kF r

2

π

∫

∞

0

sin[(2kF r)q]

q ε(q, 0)
dq . (2.12)

Therefore the increment of the potential energy due to the screening by the relativistically

degenerate electron liquid is

Vs(r) ≡ V (r) −

(

−
Ze2

r

)

= Ze2(2kF )
1

2kF r

{

1 −
2

π

∫

∞

0

sin[(2kF r)q]

q ε(q, 0)
dq

}

= 7.525 × 10−3 Z

(

Z

A
ρ6

)1/3

[MeV]
1

2kF r

{

1 −
2

π

∫

∞

0

sin[(2kF r)q]

q ε(q, 0)
dq

}

. (2.13)

Equation (2.12) is based on the linear response theory (e.g., Pines & Nozières 1966).

Dharma-wardama & Perrot (1982, 1990) have carried out the density-functional study of

hydrogen plasmas as well as the density-functional study of C, Si, and Ge metallic liquids and

have found that the detailed results of the density-functional calculations of these systems

are close to the results obtained by the linear response theory. They have also confirmed that

the density-functional theory as well as the linear response theory reproduce satisfactorily

the experimental results on the Ge metallic liquid, thereby proving the excellence of these

theories for this system. This fact gives great support to our use of the linear response theory

in the present problem.

Compared with the case of the pure Coulomb potential, the effective electron en-

ergy at the position of the nucleus is increased by Vs(0). Hence the usual factor in the
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electron-capture rates pEF (Z, E) (Morita 1973; Fuller, Fowler, & Newman 1980; Langanke

& Martinez-Pinedo 2000) should be replaced by

{

[E − Vs(0)]2 − m2

e

}1/2

[E − Vs(0)] F [Z, E − Vs(0)] . (2.14)

At the same time the shift in the threshold energy for the electron capture should be taken

into account (Couch & Loumos 1974; Gutierrez et al. 1996; Bravo & Garcia-Senz 1999).

In Figure 1 we show the function

I ≡
2

π

∫

∞

0

sin[(2kF r)q]

q ε(q, 0)
dq (2.15)

as a function of R = 2kF r for various values of rs. In Figure 2 we show the function

J ≡
1

2kF r

{

1 −
2

π

∫

∞

0

sin[(2kF r)q]

q ε(q, 0)
dq

}

(2.16)

as a function of R = 2kF r for various values of rs. In Figure 3 we enlarge Figure 2 for small

values of R = 2kF r. In Figure 4 we show J(R = 0) as a function of rs. Equation (2.13) can

be rewritten as

Vs(r) = 7.525 × 10−3 Z

(

Z

A
ρ6

)1/3

J [MeV] . (2.17)

The nuclear radius rnuc can be expressed as (Morita 1973)

rnuc = 1.2 A1/3 [fm] . (2.18)

From equations (2.8) and (2.18) we have

2kF rnuc = 6.3 × 10−3 Z1/3ρ
1/3

6
. (2.19)

From Figure 3 we see that the function J(R) is almost constant for small values of R which

corresponds to 2kF rnuc given by equation (2.19), when the mass density is not extremely high.

This fact justifies our use of Vs(0) for the screening potential at the nuclear radius. When

the mass density becomes extremely high, then one should use the value of the screening

potential Vs(r) by adopting the value of the function J(R = 2kF rnuc).

The electron Fermi energy is given by

EF = 0.5110

[

{

1 + 1.018(Z/A)2/3ρ
2/3

6

}1/2

− 1

]

[MeV] . (2.20)
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When the electrons are extremely relativistic, we have

Vs(r)

EF
' 1.460 × 10−2 Z J . (2.21)

Therefore, we find that the screening potential at the origin Vs(0) is typically a few percent

of the electron Fermi energy. Thus we conclude that the screening corrections to the electron

capture rates by the relativistically degenerate electron liquid are not as great as anticipated

by Takahashi, El Eid, & Hillebrandt (1978) and also by Fuller, Fowler, & Newman (1980).

In passing, it is interesting to compare our present detailed calculation with the Fermi-

Thomas model which is generally more crude than the random-phase approximation that

has been adopted in the present paper (Pines and Nozières 1966). In the Fermi-Thomas

model the screening potential at the origin is expressed as (Pines and Nozières 1966)

[Vs(0)]FT = Ze2 kFT , (2.22)

where kFT is the Fermi-Thomas screening wave number. When the electrons are extremely

relativistic, the Fermi-Thomas screening wave number is expressed as (Flowers & Itoh 1976)

kFT

2kF
'

1

2

(

4

π

1

137.036

)1/2

= 0.0482. (2.23)

By Comparing with Figures 2, 3, 4, we find that the prediction of the Fermi-Thomas model

is quite good (the accuracy is about 7%) for the present problem when the electrons are

extremely relativistic.

3. ANALYTIC FITTING FORMULAE

In this section we will present accurate analytic fitting formulae for J(R) in order to

facilitate the application of the numerical results obtained in the present paper. We have

carried out the numerical calculations of J(R) for 0.00001 ≤ rs ≤ 0.1, 0 ≤ R ≤ 50.0. We

express the analytic fitting formula by

J(rs, R) =

10
∑

i,j=0

aij siuj , (3.1)

s ≡
1

2
(log

10
rs + 3) , (3.2)

u ≡
1

25.0
(R − 25.0) . (3.3)
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The coefficients aij are presented in Table 1. The accuracy of the fitting is generally better

than 0.1%.

The value of J(rs, R) for R = 0 is of course obtained by the fitting formulae (3.1), (3.2),

(3.3). For the sake of simplicity we will give a separate fitting formula

J(rs, R = 0) =

10
∑

i=0

bi s
i , (3.4)

s ≡
1

2
(log

10
rs + 3) . (3.5)

The coefficients bi are presented in Table 2. The accuracy of the fitting is generally better

than 0.1%.

4. CONCLUDING REMARKS

We have studied the screening corrections to the electron capture rates by the relativis-

tically degenerate electron liquid. In particular, we have calculated the screening potential

caused by the relativistically degenerate electron by using Jancovici’s (1962) static longi-

tudinal dielectric function. We have found that the screening potential is typically a few

percent of the electron Fermi energy. Hence we conclude that the screening corrections to

the electron capture rates at high densities are not as great as anticipated by Takahashi, El

Eid, & Hillebrandt (1978) and also by Fuller, Fowler, & Newman (1980).

We have presented accurate analytic fitting formulae which will be useful when one

wishes to apply the present results to the calculations of the screening corrections to the

electron capture rates at high densities.

We wish to thank K. Nomoto for drawing our attention to the present important prob-

lem. We are grateful to Y. Takada for clarifying the validity of the linear response theory

in the present problem. We also thank Y. Oyanagi for allowing us to use the least-squares

fitting program SALS. This work is financially supported in part by Grants-in-Aid of the

Japanese Ministry of Education, Culture, Sports, Science, and Technology under contracts

13640245, 13740129.
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Table 1: Coefficients aij

j=0 j=1 j=2 j=3 j=4 j=5

i=0 2.80066E−2 −1.34650E−2 4.70157E−3 −1.62773E−3 3.57498E−4 2.77894E−3

i=1 2.91425E−4 −4.77037E−4 3.24480E−4 −1.84976E−4 1.26065E−4 3.14205E−4

i=2 3.71730E−4 −1.11205E−3 1.11414E−3 −7.49702E−4 4.08871E−4 7.01182E−4

i=3 −3.40043E−4 1.76471E−3 −7.27685E−4 −2.02979E−3 3.21763E−3 4.64229E−3

i=4 8.38363E−3 −3.40534E−3 −1.66683E−3 −4.20858E−3 1.00310E−2 2.03169E−2

i=5 2.98675E−2 −3.93466E−2 1.81463E−2 −6.64180E−3 9.00760E−3 2.90509E−2

i=6 1.44775E−2 −4.06027E−2 3.23311E−2 −8.65196E−3 −2.12560E−3 1.34492E−3

i=7 −3.96957E−2 4.02288E−2 −5.91508E−3 −8.13296E−3 −1.31089E−4 −2.02386E−2

i=8 −3.32815E−2 5.69571E−2 −3.05845E−2 −1.66852E−3 7.99359E−3 −1.02361E−3

i=9 1.51205E−2 −1.18443E−2 −2.51457E−3 4.25544E−3 2.57406E−3 1.07350E−2

i=10 1.52622E−2 −2.14839E−2 8.10578E−3 2.56649E−3 −1.54054E−3 3.10744E−3

j=6 j=7 j=8 j=9 j=10

i=0 −1.84849E−3 −5.69873E−3 4.05787E−3 4.57584E−3 −3.62782E−3

i=1 −4.25228E−4 −5.70927E−4 6.77612E−4 3.74132E−4 −4.07058E−4

i=2 −7.64487E−4 −1.83728E−3 1.70005E−3 1.40476E−3 −1.30179E−3

i=3 −7.73692E−3 −1.08840E−2 1.41242E−2 6.32205E−3 −7.84898E−3

i=4 −3.47978E−2 −3.75841E−2 5.56369E−2 1.91593E−2 −2.75063E−2

i=5 −4.92450E−2 −4.46316E−2 7.19123E−2 2.38135E−2 −3.55769E−2

i=6 −2.51385E−3 3.37337E−3 −1.61833E−3 3.64315E−3 −2.90671E−3

i=7 3.68866E−2 2.53148E−2 −5.16877E−2 −8.55152E−3 2.08971E−2

i=8 5.80492E−3 −1.04420E−2 −3.04257E−5 3.95689E−3 −2.15731E−4

i=9 −2.02777E−2 −1.85917E−2 3.19260E−2 7.62300E−3 −1.40661E−2

i=10 −8.44178E−3 −2.77226E−3 1.11309E−2 1.36109E−3 −5.00155E−3
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Table 2: Coefficients bi

bi

i=0 4.50861E−2

i=1 1.13078E−3

i=2 3.12104E−3

i=3 8.64302E−4

i=4 1.57214E−2

i=5 8.16962E−2

i=6 7.84921E−2

i=7 −6.80863E−2

i=8 −9.79967E−2

i=9 2.04907E−2

i=10 3.66713E−2
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Fig. 1.— I as a function of R = 2kF r for rs=0.1, 0.01, 0.001, 0.0001, 0.00001.
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Fig. 2.— J as a function of R = 2kF r for rs=0.1, 0.01, 0.001, 0.0001, 0.00001.
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Fig. 3.— Same as Fig. 2, but for small values of R = 2kF r.
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Fig. 4.— J(R = 0) as a function of rs.


