The r-process in supernovae with new microscopic mass formulae
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We examine the effects of the newly-derived microscopic Hartree-Fock-Bogoliubov (HFB)
mass formulae on the r-process nucleosynthesis and analyse to what extent a solar-like
r-abundance distribution can be obtained. The r-process calculations with the HFB-2
mass formula are performed, adopting the parametrized model of the prompt explosion
from a collapsing O-Ne-Mg core for the physical conditions. The result is compared with
those obtained with the HFB-7 and droplet-type mass formulae.

1. Introduction

The origin of the rapid neutron-capture (r-process) nuclei is still a mystery. One of the
underlying difficulties is that the astrophysical site (and consequently the astrophysical
conditions) in which the r-process takes place has not been identified [11,13]. Another
underlying difficulty is due to the uncertainties in the theoretical predictions of nuclear
data far from the (-stability, for which essentially no experimental data exist. Recently,
Hartree-Fock mass formulae with fully microscopic approaches have been constructed
(3,8,4,9,5]. The latest Hartree-Fock-Bogoliubov formula, labeled HFB-2 up to HFB-7
[4,9,5], are among the most accurate mass formulae, predicting the 2135 measured masses
with a root-mean-square error around 0.670 MeV for nuclei with N, Z > 8. The purpose
of this study is to examine the effects of the newly-derived microscopic mass formula on
the r-process nucleosynthesis and analyse to what extent a solar-like distribution can be
obtained (see [14] for more detail). We adopt, here, for the physical conditions the semi-
realistic astrophysical model of the “prompt supernova explosion” from the collapsing
O-Ne-Mg core (see Wanajo et al. in this volume and [13]). The r-process nucleosynthesis
with the HFB-2 mass formula in each outgoing mass trajectory is then calculated with a
nuclear reaction network code. The mass-averaged yields over the mass shells relevant for
the r-process is compared with the r-process abundance patterns in the solar system, as
well as with those obtained with other mass formulae, more specifically the HFB-7 mass
prediction and the extensively used droplet formulae of [6] and [7].



2. Microscopic Mass Models and the r-Process

Among the ground state properties, the atomic mass is obviously the most fundamental
quantity and influences the r-process abundance predictions. A new major progress has
been achieved recently within the Hartree-Fock method [3,8,9,4,5]. It is now demonstrated
that this microscopic approach, referred to as HFB-2 to HFB-7, making use of a Skyrme
force fitted to essentially all the mass data, is not only feasible, but can successfully
compete with the most accurate droplet-like formulae available nowadays (e.g., [7]) in
the reproduction of measured masses. It is found that globally the extrapolations out to
the neutron-drip line of all these different HFB mass formulae are essentially equivalent.
Although HFB-2 and HFB-7 are obtained with significantly different Skyrme forces (in
particular, HFB-2 is characterized by an density-independent pairing force and an effective
isoscalar mass M} = 1.04, while HFB-7 has an density-dependent pairing force and M} =
0.8), deviations smaller than about 2 MeV are obtained for nuclei with Z < 82.
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Figure 1. Final mass-averaged r-process abundances (line) as a function of mass number
obtained with various mass formulae; (a) HFB-2, (b) HFB-7, (c) FRDM, and (d) DM.
These are compared with the solar r-process abundances (points) from [2], which are
scaled to match the height of the third r-process peak.

In the present study, we use the parametrized model of the “prompt supernova explo-
sion” from an 8 — 10M,, progenitor star with a 1.38M; O-Ne-Mg core (model Q6, see
Wanajo et al. in this volume and [13] for more detail). The reason is that this model leads
to r-abundance distributions that have been shown to be relatively similar to the solar
distribution, at least if an artificial enhancement of the shock-heating energy is assumed.
In addition, this scenario does not suffer from the problematic overproduction of A ~ 90
nuclei seen in the neutrino-driven wind model [15,11,12]. The r-process abundances are
obtained by solving an extensive nuclear reaction network code. All reaction rates are



calculated within the statistical model of Hauser-Feshbach making use of experimental
masses whenever available or the HFB-2 mass predictions [4] otherwise. The 3-decay and
B-delayed neutron emission rates are taken from the gross theory (GT2) [10], obtained
with the ETFSI [1] Q4 predictions. Other nuclear inputs are the same as in [13].
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Figure 2. Contours of the Sy, /2 values (= 1, 2, ---, 8 MeV) for various mass formulae;
(a) HFB-2, (b) HFB-7, (c) FRDM, and (d) DM.

3. Impact of Mass Predictions on the r-Process

In Figure 1, the mass-averaged abundances (line) are compared with the solar r-process
abundance pattern [2] (dots) that is scaled to match the height of the third r-process
peak. For comparison, identical calculations were performed by replacing our standard
HFB-2 masses by the HFB-7 [5], FRDM [7], and DM [6] predictions. A few significant
differences in the abundance patterns can be observed near the second and third peaks
when use is made of the Hartree-Fock models (HFB-2 and HFB-7) on one side and the
droplet models on the other side. First, the underproduction of nuclei at A ~ 115 and
140 is more pronounced with the FRDM and DM masses than with the HFB-2 or HFB-
7 masses. Second, the abundances near A = 130 in the HFB cases are spread out in
contrast to what is observed in the solar r-abundances. Third, the abundance curves
near the third peak with the HFB masses are widened and the valley at A = 183 as
observed in the solar r-distribution is significantly shifted to lower mass numbers. These
differences reflect the model properties of is0-Sa,/2 curves (Figure 2), along which the
r-process proceeds. Major local differences between the HFB and the droplet masses are
found near the neutron magic numbers N = 82 and 126. The Hartree-Fock masses show
weaker shell-closures, i.e., smoother is0-S,/2 curves, at N = 82 and 126. This reduced
shell effect is responsible for spreading the second and third abundance peaks.

In order to test the impact of a change in the dynamical timescales, we modify the
density and temperature profiles of each trajectory, so that p/(¢t) = p(¢t/f;) and T'(t) =
T(t/f:), i.e., the dynamical timescale is multiplied by a factor of f;. The final mass-
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Figure 3. Same as Figure 1, but for (a) slow trajectories (f; = 3) and (b) fast S-decay
rates (a factor of three, see text).

averaged abundance curve for f; = 3 is shown with the scaled solar r-process abundances
in Figure 3a. We find a good agreement between the calculated and solar r-process
patterns, in particular near the second and third peaks. However, an underproduction at
A =~ 115 and 140 appear. Furthermore, to estimate the influence of -decays, we show in
Figure 3b the mass-averaged r-process yields obtained by multiplying all the 3-decay rates
by a factor of three (i.e., reducing 73 by a factor of three). Interestingly, no significant
differences are seen between Figures 3a and 3b. For (-decay rates faster by a factor of
three, the freezeout (corresponding to 75 = 7,,) takes place at higher temperatures and
thus at higher S? value, which has globally the same effect as slowing down the outgoing
material by the same factor.
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