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In the two-dimensional random system composed of a disordered array of dielectric cylindrical columns,
Anderson localization of light occurs. To obtain frequency dependence of the light localization characteristics,
we have simulated temporal diffusion of electromagnetic waves in such a random system adopting parameters of
actual nano-sized semiconductor samples with a high filling fraction of the columns, using the finite-difference
time-domain method. We have investigated diffusion length, autocorrelation function of light energy density,
and time variation of total energy within the system at several frequencies. We obtain universal behavior of light
localization phenomenon as a function of the light localization length and system size, from which we estimate
frequency dependence of the localization length. In addition, we show that the frequency dependence of the
localization effect depends on the degree of wave interference due to Bragg-like diffraction, rather than on the
magnitude of the light scattering cross section of a single scatterer.
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I. INTRODUCTION

The possibility of Anderson localization of light in a ran-
dom dielectric system, namely spatial electromagnetic wave
localization similar to electron wave localization in a disor-
dered solid, has been studied extensively over the last three
decades.1–3 It is predicted that the light localization effect in
random media has strong frequency dependence. To realize
strong localization, the photon mean free pathl must be nearly
equal to the wavelength of lightλ.3,4 However, it is not easy to
derive the specific parameters for strong localization. For ex-
ample, theoretical approaches for the effect are rather limited
because the light propagation problem on the random system
is analytically insoluble. In addition, the localization effect
is hard to observe experimentally because of the various ran-
domness of actual samples, and observations of light localiza-
tion have been realized only recently.5,6

A promising experimental approach for random semicon-
ductor samples is to observe random lasing, which appears
as a result of light localization. Random lasing is expected
to occur if optimal parameters for obtaining strong light lo-
calization effects are met at a wavelength that lies within the
emission range of the semiconductor. This phenomenon is
realized because the localization effect by the random media
plays the role of an optical resonator; and the random media
also serve as gain media at the emission wavelength. Ran-
dom lasing using randomly arrayed nano-sized semiconduc-
tors has been observed for zinc oxide (ZnO) powders7–9 in a
three-dimensional (3D) system, and on ZnO nanocolumns10,11

in a two-dimensional (2D) system. Besides ZnO, random
lasing also has been observed on gallium nitride (GaN)
nanocolumns,12 which form a 2D system. In a 3D random
system, it is difficult to achieve the required uniformity of
scatterer size and observe spatial distributions of the local-
ization effect inside the samples. On the other hand, in a 2D

system such as semiconductor nanocolumns, it is much eas-
ier to confirm the uniformity and observe localization states
experimentally.

In this paper, we have simulated light propagation in GaN
nanocolumns13 via the finite-difference time-domain (FDTD)
method.14 The simulated sample consisted of parallel nano-
sized columnar semiconductor crystals. The diameter of the
nanocolumns was varied from about 50 to 400 nm, column
heights were around 1µm, and the filling fraction of the
columns was approximately 0.4. For the purpose of inspecting
frequency dependence of the light localization, we describe
the frequency dependencies of diffusion length, autocorrela-
tion function and photon lifetime with a fixed column diame-
ter and a fixed filling fraction, and discuss the light localiza-
tion characteristics using these quantities.

The paper is organized as follows. In Sec. II, we explain the
numerical calculation method. In Secs. III and IV, we show
results for energy diffusion length and energy autocorrelation
function, and discuss the regime where the localization length
is smaller than the system size. In Sec. V, we show photon
lifetime of the system and discuss the frequency dependence
of the localization effect in detail. We discuss the scaling be-
havior of the quality factor as a function of the ratio between
the localization length and system size, from which we show
frequency dependence of the localization length in Sec. VI.
Lastly, we consider the physical origin of the light localiza-
tion in Sec. VII.

II. NUMERICAL CALCULATION METHOD

In the infinite-size 2D disordered system, all states of a light
wave are expected to be localized.15 On the other hand, in the
finite-size random system, those states for which the localiza-
tion lengthξ is smaller than the system sizeLsys are regarded
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FIG. 1. (Color online) Schematic view and top view of the 2D FDTD
system for a cylindrical column ensemble. In our simulation, the
height of the columns is set to be infinity.

as thelocalized states, while the states withξ larger thanLsys

are regarded as theeffectively delocalized stateswhere light
waves diffuse rapidly. To observe the localization effect in
the finite-sized system composed of the columns, the radius
of the columnsR, the column filling fractionΦ, the refractive
index of the columnsn, and the frequency of electromagnetic
waves f must be properly tuned. For the purpose of study-
ing frequency dependence of the light localization in the finite
2D system, we have simulated light propagation in a dielec-
tric cylindrical column ensemble, by adopting the parameters
of GaN nanocolumn samples.

We have used the 2D FDTD method to simulate tem-
poral propagation of electromagnetic waves in the random
medium. The FDTD method is a versatile numerical calcu-
lation method, in which Maxwell’s equations are discretized
using central difference approximations of the space and time
partial derivatives. A schematic view of the 2D FDTD model
is illustrated in Figure 1(a), where the electromagnetic waves
propagate in thex-y plane. In the 2D systems, two polariza-
tions, namely TM-polarization (electric fieldsE parallel to the
z axis) and TE-polarization (magnetic fieldsH parallel to the
z axis) are possible. Maxwell’s equations for the TM field can
be written as

εr(r)ε0
∂

∂t
Ez(r, t) =

∂

∂x
Hy(r, t) −

∂

∂y
Hx(r, t), (1a)

µ0
∂

∂t
Hx(r, t) = −

∂

∂y
Ez(r, t), (1b)

µ0
∂

∂t
Hy(r, t) =

∂

∂x
Ez(r, t), (1c)

and those for the TE field as

µ0
∂

∂t
Hz(r, t) = −

∂

∂x
Ey(r, t) +

∂

∂y
Ex(r, t), (2a)

εr(r)ε0
∂
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Ex(r, t) =

∂

∂y
Hz(r, t), (2b)

εr(r)ε0
∂

∂t
Ey(r, t) = −

∂

∂x
Hz(r, t), (2c)

whereε0 andµ0 are the electric permittivity and magnetic per-
meability of vacuum, respectively. Herer denotes the posi-
tion (x, y), andεr(r) is the relative electric permittivity. We
here ignore frequency dispersion and the imaginary part of
the electric permittivity, and the refractive indexn(r) is re-
lated toεr(r) by εr(r) = n2(r). The space mesh∆r is set to
5 nm, which is small enough compared with the column ra-
dius (R = 50 nm) and the average distance of each column a
(also of the order ofR). To model an open system, we used
Berenger’s perfectly matched layer16 for the boundary condi-
tion in the FDTD simulation.

The sample area consists of a random array of parallel di-
electric columns with a constant radius (R = 50 nm) and a
constant refractive index (n = 2.4, the value for GaN at a
wavelength of 500 nm). The dielectric cylindrical columns
(namely circular disks in the 2D systems) are placed randomly
without touching each other, and are embedded in a vacuum.
Figure 1(b) shows an example of the column configuration
over a 5 squareµm area. Each disk represents a dielectric
cylindrical column. The randomness is introduced through
the positions of the columns. The column filling fractionΦ is
0.4. Unless explicitly stated, we use a system 20µm× 20µm
in size.

For investigating frequency dependence of light diffusion
characteristics, we prepared a GaussianEz pulse for the TM
polarization and anHz pulse for TE polarization, in the center
of the simulation system, in order to generate concentric light
diffusion from the point source. In the next three sections,
we calculate energy diffusion length, energy autocorrelation
function, and photon lifetime to study the frequency depen-
dence of the light localization phenomenon and discuss both
the localized and the effectively delocalized regimes.

III. DIFFUSION LENGTH

In this section, we have used the diffusion lengthL(t) de-
fined by

L2(t) =
∫

dr u(r, t)|r − r0|2, (3)

in analogy with a random electron system,17 wherer0 is the
position of the point source,t the elapsed time measured from
the end of the incident pulse, andu(r, t) the normalized energy
density with respect to the total supplied energy at a givent.
In the effectively delocalized regime ofd dimensions,L2(t) is
given by

L2(t) ∼ 2dDt (4)

whereD is the diffusion coefficient. On the other hand, in
the localized regime, growth ofL2(t) is suppressed and in the
limit of large t is saturated at a value given by18

L2(t) ∼ d(d + 1)
4

ξ2. (5)

The frequency width of the incident pulse∆ f is 0.05 PHz
(petahertz, 1015 Hz), resulting in a pulse width of about
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FIG. 2. (Color online) Diffusion lengthL(t) for both polarizations for variousfc. The inset of (a) displaysL(t) at fc = f1 and f2.

8.83 fs. The full duration of the incident pulsetinc, namely
the time from the front edge of the pulse to the end, is set to
be 91 fs. The amplitude of the incident field at the edges of the
pulse is sixteen orders of magnitude less than the amplitude at
the peak. We have calculatedL(t) at several center frequencies
of the incident pulsefc, which ranged from 0.05 to 2.10 PHz
in increments of 0.05 PHz. For the calculation of the diffusion
length, no light energy must escape from the system before the
incident pulse is fully injected. Therefore the above parame-
ter of the incident pulse is selected so that the total incident
energy remains inside of the sample area att = 0 when the in-
cident pulse is terminated. Note that we should use a narrow
frequency width∆ f for precisely investigating the frequency
dependence ofL(t), while∆ f × L2

sys& D needs to be satisfied
to ensure that the incident energy remains in the sample area
at t = 0. This is why we set∆ f to be 0.05 PHz.

Figure 2 shows the diffusion lengthL(t) for both polariza-
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FIG. 3. (Color online) Frequency dependence of the diffusion coeffi-
cientD for both polarizations.

tions. We can see that the growth ofL2(t) for most frequencies
is linear as given by Eq. (4), indicating that such frequencies
lie in the effectively delocalized regime. Because most of the
incident energy is injected shortly aftert = −tinc/2, the linear
increase begins after−tinc/2. The values of the diffusion coef-
ficient D are estimated from the slopes as shown in Figure 3.
We find that three dips occur in this frequency range for both
polarizations. On the other hand, in the localized regime, we
observe suppressed growth ofL2(t) at fc = 0.7 PHz (f1) and
fc = 1.2 PHz (f2) for TM-mode as shown in Fig. 2 (a). The
inset of Figure 2 (a) shows the longtime behavior off1 and f2.
From the Eq. (5),ξ is estimated to be about 1.2µm at f1 and
1.6µm at f2.

If we perform the same calculation for another configura-
tion of columns, the absolute value ofD changes a little. How-
ever, the overall frequency dependence does not depend on the
specific sample configurations, but only onR, Φ, andn. This
is not limited to the diffusion length, but is just as valid for the
autocorrelation function and the photon lifetime as discussed
below.

IV. AUTOCORRELATION FUNCTION

In the case of the diffusion length, the available duration
time for the analytical method was limited to about 100 fs for
the effectively delocalized regime. In this section, we use the
autocorrelation functionC(t), in which the available analysis
duration time is not limited. The autocorrelation function is
defined by

C(t) =
1
t

∫ t

0
dt′P(t′), P(t) =

∫
dr

√
u(r,0)u(r, t), (6)

in analogy with a random electron system.17 The functionP(t)
denotes the overlap function between the initial spatial distri-
bution of the normalized energy densityu(r,0) at t = 0 and
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FIG. 4. (Color online) Autocorrelation functionC(t) of both polarizations for severalfc.

the distribution ofu(r, t) at a givent. SinceP(t) fluctuates
strongly in time, we useC(t) instead ofP(t) to smear out the
fluctuation. In the case of the infinite 2D random system, it is
expected that bothP(t) andC(t) decay in proportion tot−1/2

in the delocalized regime, while they remain constant in the
limit of large t in the localized regime. On the other hand,
in the case of the finite system where the localization length
is larger than the system sizes, wave packets eventually touch
the boundary of the system and the electromagnetic energy is
absorbed. HenceP(t) begins to decay in proportion toe−t/τ,
while C(t) is in proportion tot−1.

Figure 4 shows the autocorrelation functionC(t) for sev-
eral fc. As expected from the behavior ofL(t), C(t) aroundf1
and f2 have finite values in the limit of larget in the case of
the TM-mode, because the frequency ranges are in the local-
ized regime. On the other hand, for the effectively delocalized
regime we can see that at longer times (t & 103 fs) C(t) is

0.0 0.5 1.0 1.5 2.010-2

10-1

100

 TM polarization
 TE polarization

C
(t)

fc (PHz)

FIG. 5. (Color online) Frequency dependence of the autocorrelation
functionC(t) of both polarizations att = 104 fs.

in proportion tot−1, respectively, indicating that most of the
energy has begun to be absorbed at the boundaries.

In order to investigate the frequency dependence of the au-
tocorrelation function, we have plottedC(t) at t = 104 fs as a
function of fc, as shown in Figure 5. In both polarizations, we
find that there are three peaks corresponding to the three dips
in the diffusion coefficient D. We also see thatC(t) shows a
larger value at each peak and a larger frequency dependence
for the TM field than for the TE field.

Although the quantityC(t) is suitable for studying the time
dependence of light diffusion for a longer time, we cannot
study the frequency dependence in detail because of ambi-
guity of the frequency of the order of width∆ f . In the next
section, we show more precisely the frequency dependence
of the light localization phenomenon based on a different ap-
proach.

V. PHOTON LIFETIME

We now adopt another calculation technique to investigate
frequency dependence of the light propagation in more de-
tail. Unlike the calculations above, this method gives us in-
formation about the light localization over a wide spectrum
in a single FDTD simulation. In order to study the paramet-
ric dependence of the localization effect, we have simulated
temporal propagation and diffusion of a white light source us-
ing the FDTD method, and analyzed the simulation results by
Fourier transformation. We conducted the simulations on sev-
eral sample sizesLsys= 5, 10, 15, and 20µm.

We first irradiated a Gaussian white pulse onto the center
of the sample area att = 0. The frequency width of the in-
cident pulse∆ f was 10 PHz, resulting in a pulse width of
about 0.044 fs. After irradiation, light waves gradually es-
cape through the boundaries because the simulation systems
are open. The maximum simulated timetmax is 12 ps. In the
FDTD simulation, we recorded the temporal evolution of the
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FIG. 6. (Color online) Time dependence of normalized internal energy spectraU(t, f ) within the sample system for both polarizations. Each
spectrum was obtained by normalizing a spectrum with several time windows by a spectrum with time window [0 ps, 2 ps].

electromagnetic fields by an array of antennas evenly spaced
at 100 nm intervals in the systems. We obtained the internal
energy spectrum within the systems by averaging all power
spectra that were Fourier transformed from signals recorded
in a time window [tw, tw + 2 ps] with each antenna.19,20 Our
analysis looks similar to those presented in Refs. [19,20], but
the procedures are different. We performed Fourier transfor-
mation on each recorded electric field, and then summed up
the obtained frequency spectra. In addition, we used a high
dynamic range window function, namely a Nuttall window21

for the Fourier transformation. This is required since the lo-
calization effect has large frequency dependence.

We can investigate time dependence of the internal energy
within the systems at several frequenciesU(t, f ) by changing
tw. Figure 6 shows the spectra collected over several time
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FIG. 7. (Color online) Temporal behavior of normalized internal en-
ergyU(t, f ) for several time windows. Both cases of polarization are
shown.

windows for the system ofLsys= 20 textmum, each spectrum
of which was normalized by a spectrum with time window
[0 ps, 2 ps].

It is expected thatU(t, f ) remains constant in the limit of
large t in the localized regime, whileU(t, f ) begins to decay
in proportion toe−t/τ( f ) in the effectively delocalized regime,
whereτ( f ) is the photon lifetime of the system, after wave
packets finally reach the boundary. Figure 7 shows temporal
changes ofU(t, f ) for Lsys= 20µm. We find thatU(t, f ) is al-
most constant atf = 0.7 PHz (= f1), while U(t, f ) at the other
f decays exponentially. We can estimateτ( f ) from U(t, f )
in the delocalized regime. Figure 8 shows the frequency de-
pendence of the lifetimeτ( f ) for the TM and TE modes for
several system sizes. Note thatU(t, f ) around f1 and f2 re-
mains constant on the time scale oftmax, henceτ( f ) cannot be
estimated around these frequencies (except for small enough
sizeLsys = 5µm at f2). The lacks of such points are invisible
in the figure.

We obtained precise frequency dependence of the light lo-
calization using our method. The fine peaks of the spectra
are not noise but due to the localized states and thealmost lo-
calized states22. We note that the frequency resolution of the
Fourier analysis is not sufficient to separate individual eigen-
mode. Therefore each fine peak does not correspond to single
eigenmode, but originates from the localized states and the
almost localized states. These peaks can be random lasing
modes if the gain mechanism is introduced in the system. The
fine structures depend on the specific column configurations,
but the overall frequency dependence is independent of the
configurations.

VI. SINGLE PARAMETER SCALING

In this section, we discuss the scaling behavior of light lo-
calization with system sizeLsys and the localization lengthξ
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FIG. 8. (Color online) Frequency dependence of the photon lifetimeτ( f ) of both polarizations for several system sizes.

in the case of the effectively delocalized regime. We suppose
that the photon lifetimeτ is expressed as functions ofR,Φ, n,
Lsys and f ,

T := cτ/a = F
(
R,Φ,n, Lsys, f

)
, (7)

wherec is the velocity of light in vacuum, anda the average
distance of each column.T is interpreted as the average num-
ber of times that a light wave encounters the columns before
it leaves the system.

In this paper,R, Φ, andn are fixed, whileLsys and f are
varied, soT varies as

T = F
(
Lsys, f

)
. (8)

It also depends on the polarization direction.
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FIG. 9. (Color online) Universal behavior of normalized photon life-
time T and system size dependence of photon lifetimeτ( f ) (inset).
For the vertical axisT, the average distance is set to be the lattice
constant of the triangular photonic crystal withΦ = 0.4.

We assume that the localization lengthξ is larger than mi-
croscopic length scale such as wave length,a and the mean
free pathl, so that the functionT becomes a single parameter
function of a nondimensional quantityξ/Lsys,

T ≈ F

(
ξ

Lsys

)
. (9)

Here the information off and the polarization is included in
ξ, which depends onf and the polarization.

The inset of Figure 9 shows system size dependence of the
photon lifetimeτ in the effectively delocalized regime, using
our data. Each curve is given by averaging the decay rate 1/τ
with the range of 0.05 PHz. In this figure,τ at f = 1.2 PHz
(= f2) can be estimated forLsys = 5µm, while it cannot be
estimated forLsys= 10, 15, and 20µm because the states are in
the localized regime. In addition,τ at f1 cannot be estimated
for all system sizes. To verify that our results are consistent
with Eq. (9), we divide each system size by a certain value,
which shifts the curves of the inset horizontally. We find that
the shifted curves are on a single curve as shown in Figure 9,
confirming the single parameter scaling ansatz.

From the above scaling procedure, we have obtained the
frequency dependence of the localization lengthξ. Since the
scaling procedure determines only the relative values ofξ, we
need an independent method to determineξ at a certain fre-
quency. We therefore usedξ determined fromL(t) for TM-
mode atf2 (see the inset of Fig. 2(a)). Figure 10 shows the
obtained frequency dependence of the localization lengthξ.
The behavior of this graph is consistent with the results of
L( f ), C( f ), andτ( f ), that is to say, there are three dips for
both polarizations, and two quite small values ofξ( f ) appear
for TM-mode. Note that the transition region between the ef-
fectively delocalized and localized regimes does not locate
aroundξ/Lsys = 1. In fact the exponential decay in time is
still observed even whenξ/Lsys = 0.2. We suppose that the
crossover of the two regimes exists aroundξ/Lsys= 0.2.
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VII. ORIGIN OF LIGHT LOCALIZATION

Before concluding, we discuss the physical origin of light
localization. We first consider the relationship between Mie
resonance of a single column and the light localized regime
studied here. Recently, it was reported that in similar sys-
tems the frequency dependence of the light localization is in-
dependent of the Mie resonance of a single column, but the
role of the Mie resonance in light localization is not well
understood.19,20

Figure 11 shows the frequency dependence of the nor-
malized scattering cross section (SCS) of a single column
σ( f )/2R for both polarizations, whereσ( f ) is the unnormal-
ized SCS, and is related to the photon mean free pathl by l ∼
1/(Nσ), N is the number density of columns.We find that the
peaks of the SCS are not similar to the dips of the localiza-
tion length spectra. We therefore conclude that the observed
phenomena studied here are not simply caused by the Mie res-
onance effect of a single column19,20,23,24but are due to mul-
tiple interference effects similar to that observed in photonic
crystals25 as discussed below.

Because the dielectric columns were not in contact with
each other, the system was not completely random but the
effect of the non-overlapping condition should be taken into
account. To examine the degree of randomness, we adopt the
index of randomnessDR(Φ) described by

DR =
(∆N)2

N̄
, (10)

whereN̄ and (∆N)2 respectively denote the average and vari-
ance of the number of columns in a wide area. The index
DR(Φ) approaches unity in the case of complete randomness,
while DR(Φ) approaches zero in the case of a periodic array
of columns. We have calculatedDR(Φ) for our system with
Φ = 0.4 and estimated the value to be 0.09. This small value
indicates that the non-overlapping condition is important for
our system, which means the system is somewhat periodic. In
the systems where columns are positioned periodically, pho-

tonic band structures appear and photonic band gaps occur un-
der certain conditions.26,27 WhenDR(Φ) is quite small, light
propagation characteristics similar to those of a periodic sys-
tem are expected.

In order to consider the physical meaning of frequency de-
pendence of the light localization, we have compared our re-
sults with the photonic crystals which consist of a periodic
array of the same dielectric circular columns. We have cal-
culated the density of states (DOS)ρ( f ) by adopting the same
parameters, using the plane wave expansion (PWE) method.28

Figure 12 shows the DOS for photonic crystals with a triangu-
lar lattice and a square lattice. We have used 1261 and 1681
plane waves in total for each wave vector point, respectively,
for obtaining these results and have calculated at 33,153 wave
vector points. We find that for both polarizations, the fre-
quency ranges in which the DOS is lower are close to the dips
shown in Figure 3, and the peaks of the plots in Figures 5 and
8.

In a photonic crystal, the DOS is lower (band gaps are
formed in some cases) if Bragg diffraction conditions are sat-
isfied. On the other hand, randomness in the positions of the
dielectric columns changes band gaps to pseudogaps, which
form the strongly localized regimes, in analogy with amor-
phous semiconductors.3 Thus we conclude that the light lo-
calization withΦ = 0.4 occurs because of wave interference
due to Bragg-like diffraction. This conclusion is not applica-
ble to the whole random systems but limited to the systems
with small D(Φ). WhenD(Φ) is quite large, namely in the
case of smallΦ, it is expected that light propagation charac-
teristics depend mainly on the SCS.

VIII. CONCLUSION

In this paper, we have investigated the frequency depen-
dence of the light localization phenomenon in the 2D random
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FIG. 11. (Color online) Frequency dependence of the normalized
scattering cross section for a single columnσ( f )/2R for both po-
larizations. The parameters of the column are the same as before,
namelyR= 50 nm andn = 2.4.
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FIG. 12. (Color online) Frequency dependence of the density of statesρ( f ) in the case of triangular and square lattice photonic crystals for
both polarization.

systems of a dielectric column ensemble, with reference to the
parameters of GaN nanocolumn samples. We have calculated
the diffusion length, the autocorrelation function of the energy
density, and the photon lifetime of the system, using the finite-
difference time-domain method. We find that two strongly lo-
calized regimes appear for the TM-mode under the adopted
parameters. Furthermore, we have succeeded in obtaining the
single parameter scaling of the light localization phenomenon
and the frequency dependence of the localization length. In
addition, we have estimated that the crossover from the effec-
tively delocalized to the localized regime exists when the ratio
between the localization length and the system size is nearly

0.2. We conclude that the frequency dependence of the local-
ization phenomenon occurs because of wave interference due
to Bragg-like diffraction.
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