Light Localization Characteristics in a Random Configuration of Dielectric Cylindrical Columns
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In the two-dimensional random system composed of a disordered array of dielectric cylindrical columns,
Anderson localization of light occurs. To obtain frequency dependence of the light localization characteristics,
we have simulated temporalfflision of electromagnetic waves in such a random system adopting parameters of
actual nano-sized semiconductor samples with a high filling fraction of the columns, using the fiieiterdie
time-domain method. We have investigateffudiion length, autocorrelation function of light energy density,
and time variation of total energy within the system at several frequencies. We obtain universal behavior of light
localization phenomenon as a function of the light localization length and system size, from which we estimate
frequency dependence of the localization length. In addition, we show that the frequency dependence of the
localization éfect depends on the degree of wave interference due to Bragg-fikection, rather than on the
magnitude of the light scattering cross section of a single scatterer.

PACS numbers: 42.25.Dd, 42.55.Zz, 02.70.Bf, 78.67.Qa
Keywords: Anderson localization, light localization, random laser, localization lendthsitin length, autocorrelation func-
tion, finite-difference time-domain, FDTD, nanocolumn, nanorod, photonic crystal

I. INTRODUCTION system such as semiconductor nanocolumns, it is much eas-
ier to confirm the uniformity and observe localization states

The possibility of Anderson localization of light in a ran- exlr:]e[;]r;len;allgr. we have simulated liaht probagation in GaN
dom dielectric system, namely spatial electromagnetic Wav%anocolu?nr?@ \'/ia the finite-dﬁerence%img-dgm%in (FDTD)
localization similar to electron wave localization in a disor- ethod The simulated sample consisted of parallel nano-
dered solid, has been studied extensively over the last threB : . P P
decades:® It is predicted that the light localizatiorffect in sized columnar semmqnductor crystals. The diameter of the
random media has strong frequency dependence. To reali%?.mcollmmS was varied from about. .50 o 409 nm, column

eights were around {im, and the filling fraction of the

thrag?tl)ofhaélﬁgloe?é:;hpgg Iti‘;gt'l‘,f agxgs enreritthijss:]gte : ae :;rlt% columns was approximately 0.4. For the purpose of inspecting
' frequency dependence of the light localization, we describe

derive the specific parameters for strong localization. For X4 e frequency dependencies offdiion lenath. autocorrela-
ample, theoretical approaches for tHeeet are rather limited . quency dep e . ngtn, .
because the light propagation problem on the random syste%hon functpn anc_i photon Ilfetlme W'th a fixed col'umn dlame-
is analytically insoluble. In addition, the localizatioffext er and a flxeql f|_|||ng f_rac'uon, and dls_c_uss the light localiza-
is hard to observe experimentally because of the various rar%'—On charactenistics using these quaniities.

domness of actual samples, and observations of light localiza- The_paper IS orgfamzed as follows. In Sec. I, we explain the
tion have been realized only recerit. numerical calculation method. In Secs. Il and IV, we show

. , ) results for energy diusion length and energy autocorrelation
A promising experimental approach for random semicon+ynction, and discuss the regime where the localization length
ductor samples is to observe random lasing, which appeass smaller than the system size. In Sec. V, we show photon
as a result of light localization. Random lasing is expecteditetime of the system and discuss the frequency dependence
to occur if optimal parameters for obtaining strong light 10- 4f the |ocalization fect in detail. We discuss the scaling be-
calization dfects are met at a wavelength that lies within thepayior of the quality factor as a function of the ratio between
emission range of the semiconductor. This phenomenon ige |ocalization length and system size, from which we show
realized because the localizatiofieet by the random media frequency dependence of the localization length in Sec. VI.

plays the role of an optical resonator; and the random mediastly we consider the physical origin of the light localiza-
also serve as gain media at the emission wavelength. Ragyp in Sec. VII.

dom lasing using randomly arrayed nano-sized semiconduc-

tors has been observed for zinc oxide (ZnO) powtiéis a

three-dimensional (3D) system, and on ZnO nanocoldfiiis

in a two-dimensional (2D) system. Besides ZnO, random Il NUMERICAL CALCULATION METHOD

lasing also has been observed on gallium nitride (GaN)

nanocolumns? which form a 2D system. In a 3D random In the infinite-size 2D disordered system, all states of a light
system, it is diicult to achieve the required uniformity of wave are expected to be localiz€dOn the other hand, in the
scatterer size and observe spatial distributions of the locaFinite-size random system, those states for which the localiza-
ization dfect inside the samples. On the other hand, in a 20ion lengthé is smaller than the system sikegs are regarded



wheregg andug are the electric permittivity and magnetic per-
meability of vacuum, respectively. Heredenotes the posi-
tion (%, y), ande&(r) is the relative electric permittivity. We
here ignore frequency dispersion and the imaginary part of
the electric permittivity, and the refractive indexr) is re-
lated toe,(r) by &(r) = n?(r). The space meshr is set to
5nm, which is small enough compared with the column ra-
dius R = 50 nm) and the average distance of each column a
(also of the order oR). To model an open system, we used
Berenger’s perfectly matched lay&for the boundary condi-
tion in the FDTD simulation.

The sample area consists of a random array of parallel di-

7 TL‘[‘.‘Ifi

(a) Schematic view of the 2D (b) Top view of column electric columns with a constant radiul® € 50nm) and a
FDTD model. configuration of a um constant refractive indexn(= 2.4, the value for GaN at a
square. wavelength of 500nnm). The dielectric cylindrical columns

FIG. 1. (Color online) Schematic view and top view of the 2D FDTD (namely circu!ar disks in the 2D systems) are p'ac‘?d randomly
system for a cylindrical column ensemble. In our simulation, theWithout touching each other, and are embedded in a vacuum.

height of the columns is set to be infinity. Figure 1(b) shows an example of the column configuration
over a 5 squaregm area. Each disk represents a dielectric
cylindrical column. The randomness is introduced through

as thelocalized stateswhile the states witlf larger thanLsys  the positions of the columns. The column filling fractidris

are regarded as tregfectively delocalized stateshere light  0.4. Unless explicitly stated, we use a systemu20x 20um

waves dffuse rapidly. To observe the localizatioffext in  in size.

the finite-sized system composed of the columns, the radius For investigating frequency dependence of lightidiion

of the columngR, the column filling fraction®, the refractive  characteristics, we prepared a Gaus$fapulse for the TM

index of the columns, and the frequency of electromagnetic polarization and ai, pulse for TE polarization, in the center

wavesf must be properly tuned. For the purpose of study-of the simulation system, in order to generate concentric light

ing frequency dependence of the light localization in the finitediffusion from the point source. In the next three sections,

2D system, we have simulated light propagation in a dielecwe calculate energy fliision length, energy autocorrelation

tric cylindrical column ensemble, by adopting the parametergunction, and photon lifetime to study the frequency depen-

of GaN nanocolumn samples. dence of the light localization phenomenon and discuss both

We have used the 2D FDTD method to simulate tem-he localized and thefkectively delocalized regimes.

poral propagation of electromagnetic waves in the random

medium. The FDTD method is a versatile numerical calcu-

lation method, in which Maxwell’'s equations are discretized Ill. DIFFUSION LENGTH

using central dference approximations of the space and time

partial derivatives. A schematic view of the 2D FDTD model |n this section, we have used thefdsion lengthL(t) de-

is illustrated in Figure 1(a), where the electromagnetic wavesined by

propagate in the-y plane. In the 2D systems, two polariza-

tions, namely TM-polarization (electric field#sparallel to the 204y _ 2

z axis) and TE-polarization (magnetic fieldisparallel to the L® = f dr u(r Oir - ol ®)

z axis) are possible. Maxwell's equations for the TM field can ) )
be written as in analogy with a random electron systémyherery is the

P P P position of the point sourcé the elapsed time measured from
er(r)eom Eo(r, 1) = ——Hy(r,t) — —Hy(r,1),  (1a) the end of the incident pulse, aaft, t) the normalized energy
ot ox ay density with respect to the total supplied energy at a given

0 _ 0 In the dfectively delocalized regime af dimensions|2(t) is
Host Hi(r.0) = _ayEZ(r’t)’ (1b) given by
0 0 2
"‘O& Hy(r,t) = &Ez(r,t), (1c) L“(t) ~ 2dDt 4)
and those for the TE field as whereD is the difusion codicient. On the other hand, in

P P P the localized regime, growth &f(t) is suppressed and in the
Hoz Ha(r,t) = —a—XEy(r, t) + @Ex(r, t), (2a)  limit of larget is saturated at a value given'y

sr(r)so% Ex(r,t) = % Hy(r, 1), (2b) L%(t) ~ Mfz- (5)

0 0 i inci i
8;(7")80&Ey(r,t) _ _6_xHZ(r’ t), (20) The frequency width of the incident pulgef is 0.05 PHz

(petahertz, 1¥Hz), resulting in a pulse width of about
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FIG. 2. (Color online) Dffusion lengthL(t) for both polarizations for variou§. The inset of (a) displayk(t) at f, = f; and f,.

8.83fs. The full duration of the incident pulsg:,, namely tions. We can see that the growthld{t) for most frequencies
the time from the front edge of the pulse to the end, is set tds linear as given by Eq. (4), indicating that such frequencies
be 91 fs. The amplitude of the incident field at the edges of thdie in the dfectively delocalized regime. Because most of the
pulse is sixteen orders of magnitude less than the amplitude atcident energy is injected shortly aftee —tj,./2, the linear
the peak. We have calculate(t) at several center frequencies increase begins aftetti,c/2. The values of the éusion coef-
of the incident pulsd,, which ranged from 0.05 to.20 PHz  ficient D are estimated from the slopes as shown in Figure 3.
in increments of M5 PHz. For the calculation of thefflision ~ We find that three dips occur in this frequency range for both
length, no light energy must escape from the system before thgolarizations. On the other hand, in the localized regime, we
incident pulse is fully injected. Therefore the above parameebserve suppressed growthldi(t) at f. = 0.7 PHz (f,) and
ter of the incident pulse is selected so that the total incidenf; = 1.2 PHz (f) for TM-mode as shown in Fig. 2 (a). The
energy remains inside of the sample are-ad when the in-  inset of Figure 2 (a) shows the longtime behaviofoénd f,.
cident pulse is terminated. Note that we should use a narrorom the Eq. (5)¢ is estimated to be about Juth at f; and
frequency widthAf for precisely investigating the frequency 1.6um at f,.
dependence di(t), while AT x Lgysz D needs to be satisfied  If we perform the same calculation for another configura-
to ensure that the incident energy remains in the sample are#n of columns, the absolute valueBfchanges a little. How-
att = 0. This is why we seAf to be 005 PHz. ever, the overall frequency dependence does not depend on the

Figure 2 shows the fiusion lengthL (t) for both polariza- ~ specific sample configurations, but only Bn®, andn. This

is not limited to the dfusion length, but is just as valid for the
autocorrelation function and the photon lifetime as discussed
4 below.

10 - ; - -

—@— TM polarization

10°t —&— TE polarization | | IV. AUTOCORRELATION FUNCTION

_/‘\

a? 5 In the case of the dlusion length, the available duration
é 107¢ E time for the analytical method was limited to about 100 fs for
Q the dfectively delocalized regime. In this section, we use the

1] ] autocorrelation functiol©(t), in which the available analysis
10 duration time is not limited. The autocorrelation function is
defined by
107 - - - - :
00 05 10 15 20 co=1 f dtP(t), P(D) = f dr UG, O)(r, 0, (6)
0

/. (PHz)
c
in analogy with a random electron systénihe functionP(t)
FIG. 3. (Color online) Frequency dependence of tiiugion codfi-  denotes the overlap function between the initial spatial distri-
cientD for both polarizations. bution of the normalized energy densitgr, 0) att = 0 and
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FIG. 4. (Color online) Autocorrelation functidd(t) of both polarizations for severd.

the distribution ofu(r,t) at a givent. SinceP(t) fluctuates in proportion tot™, respectively, indicating that most of the

strongly in time, we us€(t) instead ofP(t) to smear out the energy has begun to be absorbed at the boundaries.

fluctuation. In the case of the infinite 2D random system, itis In order to investigate the frequency dependence of the au-

expected that botR(t) andC(t) decay in proportion td=/ tocorrelation function, we have plott€(t) att = 10*fs as a

in the delocalized regime, while they remain constant in theunction of f, as shown in Figure 5. In both polarizations, we

limit of large t in the localized regime. On the other hand, find that there are three peaks corresponding to the three dips

in the case of the finite system where the localization lengtlin the difusion codficientD. We also see that(t) shows a

is larger than the system sizes, wave packets eventually toudlrger value at each peak and a larger frequency dependence

the boundary of the system and the electromagnetic energy fer the TM field than for the TE field.

absorbed. HencB(t) begins to decay in proportion &7, Although the quantityC(t) is suitable for studying the time

while C(t) is in proportion tot™2. dependence of light ffusion for a longer time, we cannot
Figure 4 shows the autocorrelation functi6it) for sev-  study the frequency dependence in detail because of ambi-

eral f.. As expected from the behavior bft), C(t) aroundf;  guity of the frequency of the order of widthf. In the next

and f, have finite values in the limit of largein the case of ~section, we show more precisely the frequency dependence

the TM-mode, because the frequency ranges are in the locadf the light localization phenomenon based on féedent ap-

ized regime. On the other hand, for théeetively delocalized proach.

regime we can see that at longer timesx( 10°fs) C(t) is

V. PHOTON LIFETIME
0
10 T T T T

We now adopt another calculation technique to investigate
frequency dependence of the light propagation in more de-
tail. Unlike the calculations above, this method gives us in-
formation about the light localization over a wide spectrum
in a single FDTD simulation. In order to study the paramet-
ric dependence of the localizatiofffect, we have simulated
temporal propagation andftlision of a white light source us-
ing the FDTD method, and analyzed the simulation results by
—8— TM polarization Fourier transformation. We conducted the simulations on sev-
—#— TE polarization eral sample sizelssys = 5, 10, 15, and 20m.

-2 s s s We first irradiated a Gaussian white pulse onto the center
0.0 0.5 1.0 1.5 2.0 of the sample area at= 0. The frequency width of the in-
f (PHZ) cident pulseAf was 10PHz, resuIFing in a pulse width of
c about 0.044fs. After irradiation, light waves gradually es-
cape through the boundaries because the simulation systems
FIG. 5 (Color online) Fre_qugncy dependence of the autocorrelatiog g open. The maximum simulated timgy is 12 ps. In the
functionC(t) of both polarizations at= 10*fs. FDTD simulation, we recorded the temporal evolution of the

10
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FIG. 6. (Color online) Time dependence of normalized internal energy spéitré) within the sample system for both polarizations. Each
spectrum was obtained by normalizing a spectrum with several time windows by a spectrum with time window [0 ps, 2 ps].

electromagnetic fields by an array of antennas evenly spacesdindows for the system dfsys = 20 textmum, each spectrum
at 100 nm intervals in the systems. We obtained the internadf which was normalized by a spectrum with time window
energy spectrum within the systems by averaging all powef0 ps, 2 ps].

spectra that were Fourier transformed from signals recorded It is expected that(t, f) remains constant in the limit of

in a time window f, ty + 2 ps] with each antenn®:2°Our  large t in the localized regime, whild(t, f) begins to decay
analysis looks similar to those presented in Ref8,20, but  in proportion toe/() in the dfectively delocalized regime,
the procedures areftiérent. We performed Fourier transfor- wheret(f) is the photon lifetime of the system, after wave
mation on each recorded electric field, and then summed upackets finally reach the boundary. Figure 7 shows temporal
the obtained frequency spectra. In addition, we used a highhanges oU (t, ) for Lsys = 20um. We find thau(t, f) is al-
dynamic range window function, namely a Nuttall windéw most constant at = 0.7 PHz & f;), while U(t, f) at the other

for the Fourier transformation. This is required since the lo-f decays exponentially. We can estimafd) from U(t, )
calization d€fect has large frequency dependence. in the delocalized regime. Figure 8 shows the frequency de-

We can investigate time dependence of the internal energgendence of the lifetime(f) for the TM and TE modes for
within the systems at several frequendi#, f) by changing S¢veral system sizes. Note thaft, f) aroundf; and f; re-

ty. Figure 6 shows the spectra collected over several tim8'ains constant on the time scalet@iy, hencer(f) cannot be
estimated around these frequencies (except for small enough

sizeLsys = 5um at f). The lacks of such points are invisible
in the figure.
' ' ' ' ' We obtained precise frequency dependence of the light lo-

1()0 - . calization using our method. The fine peaks of the spectra

are not noise but due to the localized states andlinest lo-

1 0-2 | l calized state®. We note that the frequency resolution of the
< Fourier analysis is not $licient to separate individual eigen-
= mode. Therefore each fine peak does not correspond to single
> 10 r (PH) 7 eigenmode, but originates from the localized states and the

TMemode  TE-mode almost localized states. These peaks can be random lasing

10-6 || —8—0.5 0.6 | modes if the gain mechanism is introduced in the system. The

—=—07 ——07 fine structures depend on the specific column configurations,
% —A—09 —v—08 but the overall frequency dependence is independent of the
10 0 1 5 3 4 configurations.
t, (ps)

VI. SINGLE PARAMETER SCALING

FIG. 7. (Color online) Temporal behavior of normalized internal en-
ergyU(t, f) for several time windows. Both cases of polarization are  In this section, we discuss the scaling behavior of light lo-
shown. calization with system sizksys and the localization length
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FIG. 8. (Color online) Frequency dependence of the photon lifetifheof both polarizations for several system sizes.

in the case of theféectively delocalized regime. We suppose We assume that the localization lengtis larger than mi-
that the photon lifetime is expressed as functions &f @, n, croscopic length scale such as wave lengtland the mean
Lsysandf, free pathl, so that the functio becomes a single parameter
function of a nondimensional quantigyLsys,
T:=cr/a=F(R®,n, Lys f). (7)
_ o T[S )
wherec is the velocity of light in vacuum, and the average Loys)
distance of each columit. is interpreted as the average num-
ber of times that a light wave encounters the columns beforgjere the information of and the polarization is included in
it leaves the system. _ _ &, which depends ofi and the polarization.
In this paperR, ®, andn are fixed, whileLsys and f are The inset of Figure 9 shows system size dependence of the
varied, saT varies as photon lifetimer in the efectively delocalized regime, using
T-F (L f) ®) our data. Each curve is given by_ avgraging the decay rate 1
sys 1) with the range of @5 PHz. In this figurer at f = 1.2 PHz
N P (= fy) can be estimated fdtsys = 5um, while it cannot be
Italso depends on the polarization direction. estimated foLgys = 10, 15, ané 2@m because the states are in
the localized regime. In addition,at f; cannot be estimated
104 for all system sizes. To verify that our results are consistent
with Eg. (9), we divide each system size by a certain value,
S % which shifts the curves of the inset horizontally. We find that
& the shifted curves are on a single curve as shown in Figure 9,
E confirming the single parameter scaling ansatz.
i From the above scaling procedure, we have obtained the
B~ 10775 10 1520 frequency dependence of the localization lengttSince the
Ly, (km) o S (PHz) scaling procedure determines only the relative values ok
El\.’[ing‘é‘; TE'm"g‘;o need an independent method to determirat a certain fre-

B 120 ——1.10 quency. We therefore useddetermined froml(t) for TM-
—A— 145 —y—140 mode atf, (see the inset of Fig. 2(a)). Figure 10 shows the
. obtained frequency dependence of the localization le#igth
100 101 The behavior of this graph is consistent with the results of

/& L(f), C(f), andr(f), that is to say, there are three dips for
sys both polarizations, and two quite small valuest¢f) appear
for TM-mode. Note that the transition region between the ef-
FIG. 9. (Color online) Universal behavior of normalized photon life- fectively delocalized and localized regimes does not locate
time T and system size dependence of photon lifetir{#) (inset).  around¢/Lsys = 1. In fact the exponential decay in time is
For the vertical qxis:l’, the average distance is set to be the latticegtj|| ohserved even wheg/Lsys = 0.2. We suppose that the
constant of the triangular photonic crystal wibh= 0.4. crossover of the two regimes exists arouitlsys = 0.2.
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, , , , tonic band structures appear and photonic band gaps occur un-
der certain condition&?” When Dg(®) is quite small, light
—— TM polarization propagation characteristics similar to those of a periodic sys-
—&— TE polarization tem are expected.

In order to consider the physical meaning of frequency de-
pendence of the light localization, we have compared our re-
sults with the photonic crystals which consist of a periodic
array of the same dielectric circular columns. We have cal-
culated the density of states (DQ&)) by adopting the same
parameters, using the plane wave expansion (PWE) méthod.
Figure 12 shows the DOS for photonic crystals with a triangu-
oL . . . lar lattice and a square lattice. We have used 1261 and 1681

0.5 1.0 1.5 2.0 plane waves in total for each wave vector point, respectively,
f (PHZ) for obtaining these results and have calculated at 33,153 wave
vector points. We find that for both polarizations, the fre-
guency ranges in which the DOS is lower are close to the dips

FIG. 10. (Color online) Frequency dependence of the localizationshown in Figure 3, and the peaks of the plots in Figures 5 and
lengthé¢ for both polarizations. s.

[\
S

In a photonic crystal, the DOS is lower (band gaps are
formed in some cases) if Braggfitaction conditions are sat-
isfied. On the other hand, randomness in the positions of the
dielectric columns changes band gaps to pseudogaps, which

Before concluding, we discuss the physical origin of lightform the strongly localized regimes, in analogy with amor-
localization. We first consider the relationship between Miephous semiconductofsThus we conclude that the light lo-
resonance of a single column and the light localized regimeajization with® = 0.4 occurs because of wave interference
studied here. Recently, it was reported that in similar sysyye to Bragg-like dfraction. This conclusion is not applica-
tems the frequency dependence of the light localization is inp|e to the whole random systems but limited to the systems
dependent of the Mie resonance of a single column, but thgith small D(®). WhenD(®) is quite large, namely in the
role of the Mie resonance in light localization is not well case of smali, it is expected that light propagation charac-

undgrstood?'zo teristics depend mainly on the SCS.
Figure 11 shows the frequency dependence of the nor-

malized scattering cross section (SCS) of a single column
o(f)/2R for both polarizations, where(f) is the unnormal-
ized SCS, and is related to the photon mean free Ipagh ~
1/(No), N is the number density of columns.We find that the
peaks of the SCS are not similar to the dips of the localiza- In this paper, we have investigated the frequency depen-
tion length spectra. We therefore conclude that the observedence of the light localization phenomenon in the 2D random
phenomena studied here are not simply caused by the Mie res-

onance #ect of a single columi{-?92324put are due to mul-

tiple interference #ects similar to that observed in photonic 6 - - - -
crystalg® as discussed below.

Because the dielectric columns were not in contact with
each other, the system was not completely random but the
effect of the non-overlapping condition should be taken into Az 4r T
account. To examine the degree of randomness, we adopt th&
index of randomnesBg(®) described by

VII. ORIGIN OF LIGHT LOCALIZATION

VIIl. CONCLUSION

2 2t ]
C L (10) —
N — TM polarization
whereN and (AN)? respectively denote the average and vari- , , 1E pOIﬁlrlzanon ,
ance of the number of columns in a wide area. The index %.0 0.5 1.0 1.5 2.0

Dr(®) approaches unity in the case of complete randomness,

while Dr(®) approaches zero in the case of a periodic array f(PHZ)

of columns. We have calculatddk(®) for our system with

® = 0.4 and estimated the value to be 0.09. This small valué-IG. 11. (Color online) Frequency dependence of the normalized
indicates that the non-overlapping condition is important forscattering cross section for a single colum(f)/2R for both po-

our system, which means the system is somewhat periodic. |grizations. The parameters of the column are the same as before,
the systems where columns are positioned periodically, phd!@melyR = 50nm anch = 2.4.
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FIG. 12. (Color online) Frequency dependence of the density of stéf@sn the case of triangular and square lattice photonic crystals for
both polarization.

systems of a dielectric column ensemble, with reference to the.2. We conclude that the frequency dependence of the local-
parameters of GaN nanocolumn samples. We have calculatégation phenomenon occurs because of wave interference due
the difusion length, the autocorrelation function of the energyto Bragg-like difraction.

density, and the photon lifetime of the system, using the finite-
difference time-domain method. We find that two strongly lo-
calized regimes appear for the TM-mode under the adopted
parameters. Furthermore, we have succeeded in obtaining the
single parameter scaling of the light localization phenomenon
and the frequency dependence of the localization length. In This work was partly supported by Grant-in-Aid for Scien-
addition, we have estimated that the crossover from fieeze  tific Researches, #21654042 and #21104518, from the Min-
tively delocalized to the localized regime exists when the ratidstry of Education, Culture, Sports, Science and Technology,
between the localization length and the system size is nearljapan.

ACKNOWLEDGMENTS

1 S. John, Phys. Rev. Lefi3, 2169 (1984) 4 A. Taflove and S. C. Hagnes§omputational Electrodynam-
2 S, John, Phys. Rev. Lefi8, 2486 (1987) ics: The Finite-Diference Time-Domain Methpdrd ed. (Artech
3 S. John, Phys. Tod&8, 32 (1991) House, Norwood, MA, 2005)
4 A.R.R. A F. Idfe, Prog. Semicondt, 237 (1960) 15 E. Abrahams, P. E. Anderson, D. C. Licciardello, and T. V. Ra-
5 C. M. Aegerter, M. Storzer, and G. Maret, Europhys. L&§, makrishnan, Phys. Rev. Le#t2, 673 (1979)
562 (2006) 16 3. P. Berenger, J. Comput. Ph§d44, 185 (1995)
6 T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nadd®& 17 T. Kawarabayashi and T. Ohtsuki, Phys. Reb3B6975 (1996)
52 (2007) 18 H. D. Raedt, Comp. Phys. Rep.1 (1987)
7 H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and *® P. Sebbah and C. Vanneste, Phys. Re§6B144202 (2002)
R. P. H. Chang, Appl. Phys. Left3, 3656 (1998) 20 C. Vanneste and P. Sebbah, Phys. Rev1F26612 (2005)
8 H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and?' A. H. Nuttall, IEEE Trans. Acoust. Speech Signal Proc28s84
R. P. H. Chang, Phys. Rev. LeB2, 2278 (1999) (1981)
% H. Cao, J. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig,?? V. M. Apalkov, M. E. Raikh, and B. Shapiro, J. Opt. Soc. Am. B
X. Liu, and R. P. H. Chang, Phys. Rev. Ledt, 5584 (2000) 21,132 (2004)
0 S F. Yu,C.Yuen, S.P. Lau, W. I. Park, and G.-C. Yi, Appl. Phys.?® M. M. Sigalas, C. M. Soukoulis, C.-T. Chan, and D. Turner, Phys.
Lett. 84, 3241 (2004) Rev. B53, 8340 (1996)
1 S.P.Lau, H. Y. Yang, S. F. Yu, H. D. Li, M. Tanemura, T. Okita, * A. A. Chabanov and A. Z. Genack, Phys. Rev. L&t 153901
H. Hatano, and H. H. Hng, Appl. Phys. Le8{7, 013104 (2005) (2001)
12y, 1. M. Sakai, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, , 2> E. Heller, Phys. Rev. Letf7, 4122 (1996)
and K. Kishino, Appl. Phys. Lett. To be published 26 E. Yablonovitch, Phys. Rev. Le8, 2059 (1987)

13 M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, 27 E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lei, 1950
Jpn. J. Appl. Phys36, L459 (1997) (1989)



28 M. Pliha. and A. A. Maradudin, Phys. Rev.42, 8565 (1991)



