## 2007年度修士論文

# 磁性強誘電体における 相制御及び新規物質探索

理工学研究科 物理学専攻 博士前期課程 物質科学研究室 B0576001 赤木 暢

目 次

| 第1章 | 序論                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1.1 | 諸言                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |
| 第2章 | 研究背景                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                   |
| 2.1 | 強相関電子系における交差相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                   |
| 2.2 | 磁気構造に誘起される強誘電性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                   |
| 2.3 | マルチフェロイクスにおける最近の研究                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                   |
|     | 2.3.1 $\operatorname{BiMnO}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                   |
|     | 2.3.2 $R$ MnO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                   |
|     | 2.3.3 $\operatorname{CoCr}_2O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                  |
|     | 2.3.4 $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                  |
| 2.4 | 本研究の目的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                  |
| 第3章 | 実験方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                  |
| 3.1 | 単結晶作製                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                  |
| 3.2 | 結晶構造評価と試料成形                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                  |
| 0.1 | 3.2.1 粉末 X 線回折実験の原理及び測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                  |
|     | 3.2.2 粉末 X 線 Rietveld 構造解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                  |
|     | 3.2.3 背面反射ラウエ法を用いた結晶軸の切り出し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                  |
|     | 3.2.4 結晶方位の確認                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                  |
| 3.3 | 物性測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                  |
|     | 3.3.2 <b>焦電流測定</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                  |
|     | 3.3.3 磁化測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                  |
|     | 3.3.4 比熱測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                  |
|     | 3.3.5 外部静水圧下での測定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                  |
| 第4音 | 宝驗結果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                  |
| 4 1 | →<br>RMnO。<br>結晶における<br>雷気磁気<br>特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                  |
| 7.1 | A = 11 化学压力动里 (R 罟场动里)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                  |
|     | 4.1.1<br>1.2<br><b>小</b><br>从<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                  |
|     | 413 外部静水压効果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>то</u><br>40     |
|     | 4.1.0 月間前の圧加索 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>тэ</del><br>50 |
| 19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                  |
| 4.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                  |
|     | $\mathbf{H}_{\mathbf{A}} = \mathbf{A} \cup \mathbf{O}_{\mathbf{A}} \cup \mathbf{O}_{\mathbf$ | $0^{2}$             |

|      | 4.2.2    | $A_2$ CoSi <sub>2</sub> O <sub>7</sub> | 55 |
|------|----------|----------------------------------------|----|
|      | 4.2.3    | まとめ (低次元 $Co$ 酸化物結晶における電気磁気特性)         | 59 |
| 第5章  | 本論文      | このまとめ                                  | 61 |
| 5.1  | まとめ      | •                                      | 61 |
|      | 5.1.1    | $R$ MnO $_3$ 結晶における電気磁気特性              | 61 |
|      | 5.1.2    | 低次元 Co 酸化物結晶における電気磁気特性                 | 61 |
| 5.2  | 今後の      | 課題                                     | 62 |
| 参考文南 | <b>Κ</b> |                                        | 63 |
| 謝辞   |          |                                        | 66 |

## 第1章 序論

### 1.1 諸言

これまで、強相関電子系物質に関する研究の興味は、1986年のCu酸化物における高温 超伝導の発見に端を発し、Mn酸化物における超巨大磁気抵抗効果<sup>1</sup>など遍歴電子に関す るものがほとんどであった。しかし、近年 Kimura らによる TbMnO<sub>3</sub> における「磁場に よる自発電気分極制御」(磁場誘起自発電気分極フロップ)の発見 [1]を契機に、局在電子 系物質における巨大電気磁気効果が注目を集めている。「磁場による誘電性 (誘電率、自 発電気分極)の制御」及び「電場による磁性の制御」といった電気磁気効果<sup>2</sup>は、P. Curie により予言され [2]、1960年代にすでに実験的にその存在が証明されていた [3–8]。しか し、その効果はとても小さく、電子デバイスなどに応用されることはなかった。これに対 し、先に述べた TbMnO<sub>3</sub> における電気磁気効果は非常に大きいため、新規のメモリなど 様々な電子デバイスへの応用が期待できる。このため、基礎研究のみならず応用の観点か らも現在盛んに研究が行われている。

TbMnO<sub>3</sub>における発見以後、このような巨大電気磁気効果の研究は盛んに行われ、現在 では数多くの物質で巨大電気磁気効果が観測されている。その種類は多岐にわたり、「磁 場誘起自発電気分極フロップ:TbMnO<sub>3</sub> [1]」「磁場誘起自発電気分極反転:CoCr<sub>2</sub>O<sub>4</sub> [9]」 「磁場誘起自発電気分極回転:Ba<sub>0.5</sub>Sr<sub>1.5</sub>Zn<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub> [10]」など様々な効果が観測されてい る。そのメカニズムについては現在もいろいろな議論がなされているが、近年もっとも有 力視されている巨大電気磁気効果のメカニズムは、「noncollinear な磁気構造に起因する Dzyaloshinskii-Moriya 相互作用の逆効果による強誘電性発現のモデル」である。つまり、 noncollinear な磁気構造が強誘電性を誘起し、その磁気構造を外部磁場によって制御する ことで、強誘電性が影響を受けるというものである。実際にTbMnO<sub>3</sub>をはじめ巨大電気 磁気効果を示す多くの物質の強誘電相で、noncollinear な磁気構造が観測されている。し かし、このモデルでは外部磁場効果など説明できない点も多く、すべてが解明されたとは 言えない。また、このモデルの他にも「Goodenough-Kanamori 則の逆効果による強誘電 性発現のモデル」などいくつかのモデルが提唱されており、理論・実験両面から現在でも 様々な議論、研究が行われている。

そこで本研究では、磁性強誘電体である斜方晶 RMnO<sub>3</sub> に注目し、その相境界における 相競合や相制御について研究を行い巨大電気磁気効果のメカニズムの解明を目指すと共 に、RMnO<sub>3</sub>の研究で得られた知見を基に、新しい磁性強誘電体の発見を目指した。

<sup>&</sup>lt;sup>1</sup>Colossal Magnetoresistance Effect : CMR 効果

<sup>&</sup>lt;sup>2</sup>Magnetoelectric Effect : ME **効果** 

## 第2章 研究背景

## 2.1 強相関電子系における交差相関



図 2.1: 強相関電子系

強相関電子系とは電子間の Coulomb 相互作用をあらわに考慮しなければならない物質 群のことを指し、現代の半導体産業を支えているバンド理論に基づく物質群とは一線を 画している。強相関電子系物質では、電子の持つスピン・電荷・軌道の3つの自由度が互 いに強く結合している。その結果、電場による電気伝導及び誘電性(電荷)の制御、磁場 による磁性(スピン)の制御、圧力による格子(軌道)の制御など自明な結合以外に、非自 明な結合により、磁場による誘電性の制御などといった交差相関を示すことがある。この ような交差相関には必ず逆効果<sup>1</sup>が存在している。このような逆効果は応用上非常に重要 であり、現在のスピントロニクスの課題である電場や電流による磁性の制御の実現への糸 口として期待されている。また、強相関効果の特徴として、雪崩現象的に系が変化するこ とで、外場による小さな摂動から大きな応答を得ることができることがあげられる。Mn

 $<sup>^{1}</sup>$ 熱により電位差を生じる Seebeck 効果を例にあげると、その逆効果は、電流により熱冷却が可能な Peltier 効果となる。

酸化物における超巨大磁気抵抗効果は、このような強相関効果による巨大応答の1つで ある。また、このような強相関物質の中には、(反)強磁性、(反)強誘電性、強弾性などの 複数の性質を併せ持つものもあり、近年マルチフェロイック物質と呼ばれ注目を集めてい る<sup>2</sup>。

このように強相関電子系では、温度変化はもとより、電場、磁場、応力、光といった外部からの刺激に対し巨大な応答を示し、非自明な結合の物性を制御することができる。そのため、熱電変換材料や光電変換材料など環境にやさしいエネルギーデバイスや巨大磁気抵抗効果を利用した磁気ヘッドやメモリ等の電子デバイスなどの開発、新しいエレクトロニクス分野の構築といった観点から、応用面も含め盛んに研究がなされている。

本研究で注目した電気磁気効果とは、図 2.2 に示すように磁場により誘電性を制御した り、電場により磁性を制御することを指す。電場による磁性の制御を例えて言うとする と、物質中の原子のレベルでの電子構造の変化を利用した「電磁石」を構築することに相 当し、そのような機能を備えた物質群が開拓されれば、新しいメモリ等の電子デバイスへ の応用が期待できる。



図 2.2: 電気磁気効果

## 2.2 磁気構造に誘起される強誘電性

巨大な電気磁気効果を得るには、強誘電性と密接な関係にある格子系と磁性の間に結 合が必要となる。近年発見されているマルチフェロイック物質における巨大電気磁気効 果<sup>3</sup>を説明するものとして「磁気構造が強誘電性(自発電気分極)を誘起する」モデルが考 えられている。ここではその磁気構造が強誘電性(自発電気分極)を発現させるメカニズ ムについて「Goodenough-Kanamori 則 [11–14] によるもの」、「Dzyaloshinskii-Moriya 相 互作用 [15,16] によるもの」、2つのモデル [17] について説明する。

<sup>&</sup>lt;sup>2</sup>マルチフェロイック物質については 2.3 で詳しく述べる。

<sup>&</sup>lt;sup>3</sup>TbMnO<sub>3</sub>における磁場誘起分極フロップなど。その物性については、2.3で詳しく述べる。

#### ① Goodenough-Kanamori 則の逆効果による強誘電性発現のモデル

原子位置と磁性の結合を示すものの1つとして、「Goodenough-Kanamori(GK) 則」が ある。このGoodenough-Kanamori 則によると、陰イオンXを介した2つの遷移金属イオ ン $M_1$ 、 $M_2$ の間に働く超交換相互作用  $JS_1 \cdot S_2$  は、主に $M_1$ 、 $M_2$  それぞれの d 電子の数 と、これらの結合角  $M_1$ -X- $M_2$  により決まる。つまり、結合角  $M_1$ -X- $M_2$  が 180 度に近いか 90 度に近いかで、 $M_1 \ge M_2$ のスピン間に働く相互作用の符号が変化する。

この効果の逆を考えると、スピン間に働く相互作用の符号 (磁気構造)によって、結合 角 $M_1$ -X- $M_2$ が変化するとなる (図 2.3(a) 参照)。これによって、反転対称性を破るときに、 自発電気分極 Pが発現する。このメカニズムで強誘電性を発現させる場合、格子とスピ ンの周期が重要になる。まず、それぞれが整合波数である必要がある。不整合であった場 合、局所的には分極していたとしても、物質全体についてみたときには打ち消されて分極 が消えてしまう。また、整合波数であったとしても、必ず強誘電性を示すわけではない。 図 2.3(b) のような結晶構造を持っている物質<sup>4</sup>に、図 2.3(c) のような磁気秩序が現れたと きには強誘電性を発現するが、図 2.3(d) のような磁気秩序が現れたときには強誘電性を発現する。

(a) Goodenough-Kanamori rule



図 2.3: Goodenough-Kanamori 則による自発電気分極発現のメカニズム。(a) はGoodenough-Kanamori 則を示しており、結合角とスピン間の相互作 用の関係を表している。(b)は自発電気分極を持たない結晶構造を示し ている(格子変調波数 $q_L = 1/2$ )。(c),(d)は、磁気変調波数 $q_S$ が、1/4 の場合(c),1/3の場合(d)を示している。変位前のXの位置を点線で示 した。

<sup>&</sup>lt;sup>4</sup>一般的な Mn 酸化物はこのような構造を持っている (右方向が [110] になる)。 <sup>5</sup>原子変位が打ち消さないような格子とスピンの変調が必要。

#### ② Dzyaloshinskii-Moriya相互作用の逆効果による強誘電性発現のモデル

次に「Dzyaloshinskii-Moriya(DM)相互作用」に基づく自発電気分極発現のメカニズム について示す。Dzyaloshinskii-Moriya相互作用によると、遷移金属イオン $M_1 \ge M_2$ の中 心から陰イオン X がずれた場合(反転対称を破ったとき)、2つのスピンを完全に平行や反 平行にするのではなく、スピン間の角度を傾けるような相互作用が働く(図 2.4(a)参照)。 このときスピンの傾きは陰イオンの変位方向によって決まる。

この効果の逆効果を考えると、隣り合うスピン間に角度を生じると陰イオンが変位する ことになる。このようにスピン構造を起源として格子が反転対称性を破るときに自発電気 分極 Pが発現する。この Dzyaloshinskii-Moriya 相互作用の逆効果を用い、自発電気分極 を発現させるためには、陰イオンが同じ方向に変位する必要がある。これには、隣り合う スピン間の回転軸方向 (ヘリシティ)が一定方向であればよい。すなわち、図 2.4(c) に示 したような横滑りスパイラル磁気構造持つときに自発電気分極が誘起される。このとき自 発電気分極 Pの向きは、スピンの回転軸方向 ( $S_i \times S_j$ ) とその伝播ベクトル kの方向に より決まる。これは以下のような式で表される [18]。

$$\boldsymbol{P} \propto \boldsymbol{k} \times (\boldsymbol{S}_i \times \boldsymbol{S}_j) \tag{2.1}$$

前に示した「Goodenough-Kanamori則の逆効果による強誘電性発現のモデル」とは違い、このメカニズムでは格子やスピンの変調波数は関係なく自発電気分極を発現する。

(a) Dzyaloshinskii-Moriya Interaction



図 2.4: Dzyaloshinskii-Moriya相互作用による自発電気分極発現のメカニズム。 (a)はDzyaloshinskii-Moriya相互作用を示しており、結合角が180度か らずれることで2つのスピンが完全に(反)平行にならずスピン間に角 度が生じる。(b)は自発電気分極を持たない結晶構造を示している。(c) は、回転する面と伝播ベクトル k が平行な横滑りスパイラル磁性を持 つ場合を示している。このような磁気構造では、Dzyaloshinskii-Moriya 相互作用の逆効果が働き自発電気分極が出現する。

## 2.3 マルチフェロイクスにおける最近の研究

(反)強磁性、(反)強誘電性、強弾性などを2つ以上同時に示す物質群を「マルチフェロ イクス」と呼んでいる。この物質群では複数の性質が相関を持つことで交差相関を示すこ とが期待できることから、基礎研究のみならず応用の観点からも注目を集めている。その 中でも、磁性と誘電性との結合を持つ物質における電気磁気効果が現在盛んに研究され、 様々な現象が観測されている。このような電気磁気効果は、1960年代から観測されてはい たが、その効果はとても小さく実用化されるということはなかった。しかし、Kimura ら による TbMnO<sub>3</sub>における磁場による自発電気分極制御(磁場誘起自発電気分極フロップ) の発見 [1]を契機に、 $RMn_2O_5$  [19],  $CoCr_2O_4$  [9],  $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$  [10],  $MnWO_4$  [20], LiNiPO<sub>4</sub> [21], Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> [22], CuFeO<sub>2</sub> [23] など数多くの物質において巨大な電気磁気効果 が観測されている。これら巨大な電気磁気効果のメカニズムとしては、2.2 に挙げたもの などが考えられている。しかし、これらの巨大電気磁気効果については、いまだに不明な 点が多く残っており、現在でも様々な視点から盛んに研究が行われている。この章では、 マルチフェロイクスにおける最近の研究について、いくつかの物質を例に挙げながら紹介 する。

#### **2.3.1** BiMnO<sub>3</sub>



ここでは、強磁性と強誘電性を同時に示し、マグネトキャパシタンス<sup>6</sup>が観測された強磁性強誘電体 BiMnO<sub>3</sub> について紹介する。

<sup>6</sup>磁場による静電容量の変化。マグネトディエレクトリシティ(電場による誘電率の変化)と等価。

図 2.5: BiMnO<sub>3</sub> における磁化、比熱及び誘電率の温度依存性 (左)。磁化及び 誘電率の磁場依存性 (右)。[24]

図 2.5 に BiMnO<sub>3</sub> の磁化、比熱及び誘電率の温度依存性 (左)、磁化及び誘電率の磁場依存性 (右)の測定結果を示す [24]。この物質では、 $750 \sim 770$ K において強誘電転移を示し、それ以下の温度では強誘電性を示す。この強誘電性発現には、 $Bi^{3+}$  イオンの持つ  $6s^2$  の孤立電子対が重要な役割を果たしているのではないかと考えられている。また、100K 以下では強磁性を示すことから、それ以下の温度領域では強磁性と強誘電性の両性質を併せ持つことになる。これに伴い、図 2.5(右) に示したように  $BiMnO_3$  ではマグネトキャパシタンスが観測されている。このことから強磁性強誘電体  $BiMnO_3$  では、磁性と誘電性が相関を持っていると考えられる。

#### **2.3.2** *R***MnO**<sub>3</sub>

斜方晶  $RMnO_3(R=希土類イオン)$ は、反強磁性強誘電体として知られている六方晶  $RMnO_3$ と組成は同じだが、一般的には強誘電性を示さない反強磁性 Mott 絶縁体であ る。しかし、TbMnO\_3において強誘電性を示すことが発見され [1]、その自発電気分極が 磁場によって制御できることから注目を集めている。ここでは、TbMnO\_3を含む  $RMnO_3$ における巨大電気磁気効果とその発現メカニズムについて述べる。



図 2.6: *R*MnO<sub>3</sub>の結晶構造 (斜方晶 *Pbnm*)

斜方晶  $RMnO_3$  は、図 2.6 に示したような歪みを持ったペロブスカイト構造を持つ。この構造は、 $O^{2-}$ イオンからなる八面体の中心に $Mn^{3+}$ が配置された $MnO_6$ 八面体ユニットがその $O^{2-}$ イオンを角共有することで3次元的なネットワークを形成している。一方、希土類イオンはこのネットワークの隙間を埋めるように配置されている。このとき、希土類イオンはそのネットワークの隙間を埋めるのに十分なイオン半径を持っておらず、 $MnO_6$ 八面体を支えきれずに、図 2.6 のように Mn-O-Mn ボンド角が 180° よりも小さくなり、歪

み (GdFeO<sub>3</sub> 型歪み)を持ったペロブスカイト型構造 (斜方晶 *Pbnm*)になる。この系では、 磁性の担い手である Mnのスピン、電荷、軌道の秩序が物性に重要な役割を果たしている が、*R*サイトの希土類イオンもその物性に大きな影響を与える。次に、Mn-O-Mn ボンド 角と物性の関係について示す。



図 2.7: RMnO<sub>3</sub> における Mn-O-Mn ボンド角に対する磁気・軌道相図 [25]

斜方晶  $RMnO_3$  における軌道秩序及び磁気構造の Mn-O-Mn ボンド角  $\phi$  依存性が、明らかにされている [25]。Mn-O-Mn ボンド角  $\phi$  は、R サイトの希土類イオンの平均イオン半径に依存しており、平均イオン半径を小さくしていくと、Mn-O-Mn ボンド角  $\phi$  は減少していく。この Mn-O-Mn ボンド角の減少により  $MnO_6$  八面体の歪みが増大し、それに伴い磁気フラストレーションが増大していると考えられている。この磁気フラストレーションの増大により、磁気秩序が A タイプ反強磁性から E タイプ反強磁性へと変化していく。また、これら 2 つの間に位置する GdMnO<sub>3</sub>、TbMnO<sub>3</sub>、DyMnO<sub>3</sub> においては、スピンの変調周期が不整合な相が存在する。TbMnO<sub>3</sub>、DyMnO<sub>3</sub> ではこの不整合相からスパイラル反強磁性相へ転移することで強誘電性を示すようになる [26]。このスパイラル反強磁性強誘電相において磁場誘起自発電気分極フロップが観測されている [1]。

 $TbMnO_3$ では、図 2.8 のように、磁場を印加していない状態では自発電気分極を c 軸方向に持つが、磁場を b 軸方向に印加することによって、c 軸方向の自発電気分極が消え、a 軸方向に自発電気分極を持つようになる。



図 2.8: TbMnO<sub>3</sub> における *b* 軸方向に外部磁場を印加したときの *a* 軸及び *c* 軸 方向の誘電率の温度依存性 (左),*a* 軸及び *c* 軸方向の自発電気分極の温 度依存性 (中), 電気磁気相図 (右) [1]

このように自発電気分極を外部磁場によって制御できることから TbMnO<sub>3</sub> では、磁気 秩序が強誘電性を誘起していると考えられており、実際に強誘電相においてスパイラル磁 気構造<sup>7</sup>を持つことが確認されている (図 2.9 参照) [27]。



図 2.9: TbMnO<sub>3</sub> の強誘電相におけるスパイラル磁気構造 (左),常誘電相にお ける正弦波的不整合反強磁性構造 (右) [27]

また、 $Tb_{1-x}Dy_xMnO_3$ における中性子散乱の研究より、強誘電性発現に重要なのは noncollinear な磁気構造 (スパイラル磁気構造) の noncollinearity すなわち隣り合うスピン間 に有限の角度が存在するかどうかであり、その整合性は重要ではないことが明らかにされ ている (図 2.10 参照)。

以上より、斜方晶 RMnO<sub>3</sub>結晶における電気磁気効果では、斜方晶歪の増大に伴う磁気

<sup>&</sup>lt;sup>7</sup>スパイラル磁気構造による強誘電性発現のメカニズム (Dzyaloshinskii-Moriya 相互作用の逆効果による 強誘電性発現のモデル) については 2.2 で述べている。



図 2.10: 斜方晶 RMnO<sub>3</sub> 結晶の格子変調波数ベクトル  $q_L$ (=2 $q_{Mn}$ :磁気変調波数)の温度依存性 [28]。GdMnO<sub>3</sub> 以外は、強誘電転移温度を矢印で示しており、それ以下の温度では強誘電性を示す。Tb<sub>1-x</sub>Dy<sub>x</sub>MnO<sub>3</sub> x=0.50,0.68では、温度による $q_L$ の変化が見られていない。これより強誘電転移と $q_L$ の間には強い相関がないことがわかる。

フラストレーションによる noncollinear な横滑りスパイラル磁気構造が非常に重要な役割 を果たしていることが明らかとなった。

しかし、 $GdMnO_3$ <sup>8</sup>における強誘電性発現のメカニズムについては、いまだ議論がなされている。というのも、放射光 X 線回折実験より GdMnO<sub>3</sub> の強誘電相における磁気変調 波数  $q_{Mn}$  は、1/4 であることがわかっており [29]、「Goodenough-Kanamori 則の逆効果に よる強誘電性発現のモデル」の条件である整合性 (2.2 参照) も満たしていることからどち らのモデルを用いても強誘電性発現を説明することができる。現在のところ、中性子散乱 実験による磁気構造解析が困難であるため<sup>9</sup>、磁気配列を決定する決定的な実験結果は報告されていない<sup>10</sup>。このため、 $GdMnO_3$ における強誘電性がどのようなメカニズムにより 発現しているか注目を集めている。

このように磁気構造と強誘電性との関係が理論・実験両面から明らかにされていくこと で、数多くの新しい磁性強誘電体が発見されてきた。そして、その多くで磁場誘起自発電 気分極フロップのような巨大な電気磁気効果が観測されている。その中でも、CoCr<sub>2</sub>O<sub>4</sub>[9] とBa<sub>0.5</sub>Sr<sub>1.5</sub>Zn<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub>[10]において観測された巨大電気磁気効果について紹介する。

<sup>9</sup>Gd の中性子吸収が大きいため磁気散乱による信号を解析し磁気構造を決定することが困難である。 <sup>10</sup>放射光 X 線を用い、結晶構造の変化を精密に求め、それを解析することで磁気構造を決定する (2つの モデルでは格子の変位が違うので) という試みも行われているが、磁気構造の決定には至ってない。

<sup>&</sup>lt;sup>8</sup>詳しい物性については 4.1 で示す。

#### 2.3.3 $CoCr_2O_4$

ここでは、磁場による自発電気分極の反転が観測された CoCr<sub>2</sub>O<sub>4</sub> [9] について紹介する。この物質は、磁気構造に誘起される強誘電性を持ちながら、同時に強磁性を示す物質として注目を集めている。



図 2.11: CoCr<sub>2</sub>O<sub>4</sub> における磁気構造と自発電気分極。図はそれぞれ、結晶構 造と Co<sup>2+</sup>, Cr<sup>3+</sup> の電子状態 (a)、磁気状態 (b)、Dzyaloshinskii-Moriya 相互作用の逆効果による強誘電性発現のモデル (c) 及び磁化 *M*, 自発 電気分極 *P*, 磁気伝播ベクトル *q* の関係 (d) を示している [9]。

 $CoCr_2O_4$  は、図 2.11(a) に示されるようなスピネル構造を持っている。図 2.11(b) を見 てもわかるようにこのようなスピネル構造を持つ物質では、B サイト ( $Cr^{3+}$ イオン) が四 面体型に配置しているために、幾何学的磁気フラストレーションを持っている。この磁気 フラストレーションにより、コニカル磁気構造を示す (図 2.11(b),参照)。これは、z 軸方 向にスピンを射影することでスパイラル磁気構造と考えることができる。これにより、強 誘電性を示すと考えられ、同時に強磁性成分も持ち合わせているので、 $CoCr_2O_4$  は新し い強磁性強誘電体<sup>11</sup>である可能性が高い。理論的に考えると、磁化 M,自発電気分極 P, 磁気伝播ベクトル q は、図 2.11(d) のようにそれぞれ垂直になっているはずである。

 $<sup>^{11}</sup>$ RMnO<sub>3</sub> は、強磁性成分を持っていないが CoCr<sub>2</sub>O<sub>4</sub> は強磁性成分を持っているので、RMnO<sub>3</sub> とは違った磁場効果が期待できる。先に紹介した強磁性強誘電体 BiMnO<sub>3</sub> とは違い、CoCr<sub>2</sub>O<sub>4</sub> は磁気構造が強誘電性を誘起していることから、磁性と誘電性の結合が非常に強い。



図 2.12: CoCr<sub>2</sub>O<sub>4</sub> における磁化、比熱 (a) 及び自発電気分極、誘電率 (b) の温 度依存性 [9]

次に、CoCr<sub>2</sub>O<sub>4</sub>の誘電特性について紹介する。図 2.12(a) に示したように、 $T_{\rm C}$ =93K で 磁化が立ち上がり強磁性転移を示している。その後、incommensurate コニカル磁性転移 温度  $T_{S}$ =26K、lock-in 転移温度  $T_{\rm lock-in}$ =15K で磁化、比熱に異常が見られている。また、 誘電率 (図 2.12(b) 赤) は、 $T_{\rm C} \ge T_{S}$  において異常がみられる。次に、自発電気分極につ いて紹介するが、この物質では、強磁性と強誘電性を同時に示すことから焦電流測定<sup>12</sup>の 際に磁性、誘電性 2 つのドメインを同時にそろえるために、磁場 ( $H \parallel z$ ,0.01T) と電場 ( $E \parallel c$ ,400kV/m)を同時に印加しながら温度を下げていく<sup>13</sup>。その後、低温で磁場・電場 を切り、昇温過程 (20K/min) で焦電流を測定していく。このようにして測定された自発 電気分極は、図 2.12(b) 青のようになっている。これより、 $T_{S}$  で強誘電転移し、 $T_{\rm lock-in}$  で その自発電気分極が小さな異常を示していることがわかる。また、その自発電気分極の大 きさは、他の強誘電体に比べるととても小さいことがわかる<sup>14</sup>。この実験結果から、コニ カル磁気構造から強誘電性を発現することができることがわかる。

<sup>&</sup>lt;sup>12</sup>自発電気分極の大きさを見積もるための測定(3.3.2 参照)。

<sup>&</sup>lt;sup>13</sup>ME cooling と呼ぶ。通常の焦電流測定は電場のみ印加してポーリングを行う。

<sup>&</sup>lt;sup>14</sup>BaTiO<sub>3</sub> と比べ 5 桁程度、RMnO<sub>3</sub> や RMn<sub>2</sub>O<sub>5</sub> と比べると 2~3 桁程度小さい。



図 2.13: CoCr<sub>2</sub>O<sub>4</sub> における磁化 (a) 及び自発電気分極 (b) の磁場依存性 [9]

その強誘電相において磁場誘起電気分極反転が観測されている (図 2.13(b) 参照)。ここでは、 $CoCr_2O_4$  における磁場誘起電気分極反転について紹介する。図 2.13(a) のように磁化の磁場依存性では、強磁性的ヒステリシスが観測されている。このヒステリシスと同じ形で自発電気分極も反転している。これは、磁化 M、自発電気分極P、トロイダルモーメント  $T^{15}$ の関係が図 2.14 に示されように磁場によって変わっていくと考えられる。つまり  $CoCr_2O_4$  では、強磁性成分を持っているためにトロイダルモーメント T が変化しないので、このような特殊な電気磁気効果が観測されていると考えることができる。



図 2.14: 磁化 M、自発電気分極 P、トロイダルモーメント T の関係と、その 磁場による変化 [9]。

 $<sup>{}^{15}</sup>T \propto P imes M$ で定義される保存量。

#### **2.3.4** $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$

ここでは、磁場による自発電気分極の回転が観測された  $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$  [10] について紹介する。この物質は、磁性イオンに Fe を用いているために非常に高い転移温度<sup>16</sup>を示すことからも注目を集めている。



図 2.15: Ba<sub>0.5</sub>Sr<sub>1.5</sub>Zn<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub>の磁化 (a),(e)、誘電率 (b),(f)、焦電流 (c),(g)、自 発電気分極 (d) の磁場依存性。(e),(f),(g) は、拡大し低磁場領域を示 している [10]。

図 2.15(a) と (b)、(e) と (f) を見てわかるように磁化と誘電率が強い相関を持ちながら 変化していることがわかる。この物質では、図 2.15(d) にあるように磁場を印加していく ことで自発電気分極<sup>17</sup>が現れる。それに伴い、最大 5%程度のマグネトキャパシタンスが 観測されている。2.5T 以上の磁場を印加することで自発電気分極が消えていく。この自 発電気分極は印加した磁場と垂直な方向に現れる。次に印加する磁場を回転させた場合の 自発電気分極の変化について図 2.16 に示す。これより磁場を回転していくことで測定方 向の自発電気分極が小さくなっていき、 $\theta = 90$  °のときにその大きさは0 になる。さらに  $\theta$ を大きくしていくと、自発電気分極は逆方向に向く。この自発電気分極の大きさを磁場

<sup>&</sup>lt;sup>16</sup>他の物質ではの磁性強誘電相は 50K 以下の低温で観測されているが、この物質では室温以上でも磁性 強誘電相の存在が示唆されている (強誘電性を示す磁性は室温以上でも観測されているが、110K 以上では 抵抗が低いためにポーリングができず自発電気分極を測定することができないため、強誘電性の確認はさ れていない)。

<sup>&</sup>lt;sup>17</sup>ここでは電場を印加したまま測定を行っている(焦電流測定については、3.3.2で詳しく説明する)。この電気分極は電場を切った状態でも残っていることが確認されている[10]。

の回転角度に対してプロットしたものを図 2.16(b) に示す。このように自発電気分極の大 きさが磁場回転角度θに対して正弦関数的な振る舞いをしていることから、この自発電気 分極は磁場の回転に合わせて回転していると考えることができる。そのとき自発電気分極 の方向は、磁場に対して垂直を保ちながら回転している。



図 2.16: Ba<sub>0.5</sub>Sr<sub>1.5</sub>Zn<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub> の磁場を回転させたときの自発電気分極の磁場 依存性 (a)、角度依存性 (b) [10]。

## **2.4** 本研究の目的

ここに紹介した以外の物質でも、数多くの物質で巨大な電気磁気効果は観測されてお り、現在でも盛んに研究が行われている。そこで本研究では、「磁性強誘電相制御」と「新 規磁性強誘電体」という2つをキーワードに研究を行った。実際には、以下の2つを目的 とし研究を行った。

#### $RMnO_3$ における磁性強誘電相制御

現在のマルチフェロイクス研究のきっかけになった TbMnO<sub>3</sub> を含む斜方晶 *R*MnO<sub>3</sub> に おける強誘電性発現のメカニズムの解明を目指す。また、磁性強誘電相の外部磁場や外部 圧力による制御も行った。

#### 新規磁性強誘電体の探索

これまで *R*MnO<sub>3</sub> における磁性強誘電相について行った研究で得られた知見を基に新し い磁性強誘電体の発見を目指す。実際には、スパイラル磁気構造に注目し、新規強誘電体 の探索を行った。

## 第3章 実験方法

## 3.1 単結晶作製

本実験に使用した  $RMnO_3$ ・低次元 Co 酸化物  $(A_2CoSi_2O_7 \cdot ACo_2Si_2O_7)$  結晶は、浮遊 帯域溶融法 (FZ法: Floating Zone method) によって結晶成長させた単結晶試料である。 単結晶作製の流れは図 3.1 のように、試料作製条件は表 3.1 のようにした。



図 3.1: 単結晶作製の流れ

|                                                 |                                                    |               | 十四                | FZ      |                   |
|-------------------------------------------------|----------------------------------------------------|---------------|-------------------|---------|-------------------|
|                                                 |                                                    |               | ~ 况               | 成長速度    | 雰囲気               |
| <i>R</i> MnO <sub>3</sub>                       | Eu <sub>1-y</sub> Gd <sub>y</sub> MnO <sub>3</sub> |               | 1400°C,48h        |         | in Ar             |
|                                                 | Gd <sub>1-y</sub> Tb <sub>y</sub> MnO <sub>3</sub> | 1000°C,12h×2  | in Air            | 3~6mm/h | 2.5atm            |
|                                                 | DyMnO <sub>3</sub>                                 | in Air        | 1400°C,48h        |         | in O <sub>2</sub> |
|                                                 |                                                    |               | in O <sub>2</sub> |         | 5atm              |
| 低次元Co酸化物                                        |                                                    | 800°C,12h×1   | 1000°C 48h        | 1mm/h   | in Air            |
| A <sub>2</sub> CoSi <sub>2</sub> O <sub>7</sub> |                                                    | 900°C,12h × 1 | in Air            |         | 1 otm             |
| ACo <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> |                                                    | in Air        |                   |         | i aun             |

表 3.1: 仮焼・本焼および結晶成長 (FZ 法) の条件

#### ① 秤量 · 湿式混合

純度 99.9%以上の原料粉末を目的の組成比となるように電子天秤を用いて秤量し、メ ノウ乳鉢に入れ混合した。この混合には、原料粉末がよく混合されるようにエタノールを 使用した湿式混合法を用いた。原料粉末を十分に混合し、エタノールを蒸発させた。

#### ② 仮焼·乾式混合

十分に混合した原料粉末を、アルミナ製のるつぼに移し、電気炉を用いて空気雰囲気中で12時間程度仮焼を行った。均一に反応させるためにこの仮焼を2回繰り返し、仮焼と 仮焼の間には乾式混合を行った。 ③ 加圧形成·本焼

2度の仮焼の後、乾式混合を行い、均一の密度になるようにゴム風船に詰めた。まっす ぐな棒状にするためにこのゴム風船を紙で巻き、油圧プレス機を用いて300~400kgf/cm<sup>2</sup> 程度の圧力をかけ、直径約6mm、長さ約100mmの棒状に加圧形成した。その原料棒を電 気炉で48時間程度本焼を行い焼結棒を作製した。

④ 結晶成長

本焼を終えた焼結棒を用いFZ法により単結晶試料の作製を行った。FZ法には、NEC マシナリー製の赤外線加熱単結晶製造装置を使用した。ここで装置の構成および原理に ついて簡単に説明する。本装置の主要部分は熱源であるハロゲンランプ、回転楕円面鏡、 昇降回転機能を持ち試料を固定する上下の主軸で構成されている(図 3.2)。回転楕円体の 1 つの焦点にハロゲンランプが、もう一つの焦点に試料が位置する。ハロゲンランプから 出た赤外線が回転楕円体のもう一方の焦点に収束され、主軸に取り付けた試料が熱せられ 溶ける。融液を下から種結晶で支えることにより溶融帯が形成される。この状態で上下の 主軸を下に動かすことにより試料棒に対する溶融帯の位置が変化し、焦点からずれ冷えた 部分は結晶化する。このとき上下の主軸は溶融帯を安定に保つため、および試料の不均一 をなくすため互いに逆回転させている。溶融帯をそれと全く同じ組成の原料棒と種結晶で 保持しているので、フラックス法のようにるつぼなどからの不純物に汚染されることがな い。また成長雰囲気ガスおよびガス圧を変えることができる。



図 3.2: Floating Zone 炉概念図

### 3.2 結晶構造評価と試料成形

FZ 法により作製した単結晶試料は粉末 X 線回折パターンを測定し、Rietveld 法を用い て解析することで結晶性の評価を行った。また、測定に用いた試料は、背面反射ラウエ法 を用いることで結晶軸に沿って試料の切り出しを行った。ここでは、それらの測定方法や 原理について説明する。なお、X 線発生装置としてはリガク株式会社製 RINT2100 を使用 した。

#### **3.2.1 粉末X線回折実験の原理及び測定**



理想的な結晶中では、各原子が規則正 しく配列している。いま、この結晶中に 格子間隔 dを持つ格子面が存在するとす る。このような格子面に波長  $\lambda$ の単色 X 線を当てると、入射角  $\theta$  が Bragg の回折 条件

$$2d\sin\theta = n\lambda \tag{3.1}$$

を満たす場合のみ、X線はθ方向に回折 される(図3.3参照)。

単結晶試料をすりつぶした粉末試料に

図 3.3: X線回折の原理 (Braggの回折条件)

単色 X 線を入射した場合、粉末試料中では結晶格子の配向が完全にランダム (無配向と同義) になっているため (すべての格子面の情報を含んでいるため)、X 線の入射角がいずれ かの格子面の Bragg の回折条件を満たすとき、X 線は回折される。つまり、粉末試料に X 線を入射し、その回折強度を回折角度に対して測定することで、結晶構造 (各格子面) に 関する情報を得ることができる。

X線回折装置の概念図を図 3.4 に示す。加熱されたフィラメントから発生した電子がター ゲット (本研究では Cu ターゲットを使用) に衝突し X 線を発生させる。ターゲットから発 生した X 線はダイバージェンス・スリット (X 線の水平方向に対する開き角を決定)を通 リ、試料に対し角度  $\theta$  で入射する。2 $\theta$  方向に散乱された X 線はスキャッタリング・スリッ ト、レシービング・スリット (共に X 線の幅を制限)を通り湾曲単結晶に入射し、湾曲単 結晶の格子定数と CuK<sub>α</sub>線の波長から決まる回折方向 ( $\theta_m$ ) に散乱され単色化された X 線 が係数カウンターに入射される。試料及び係数管を回転させることによって角度 2 $\theta$  に対 する強度分布が観測される。



図 3.4: 粉末 X 線回折装置概念図と写真

本研究では、成長した単結晶の一部をメノウ乳鉢に入れ、できるだけ細かく粉砕し粉末 状に磨り潰したものを粉末試料として使用した。粉末試料を試料ホルダーに均一に敷き詰 め、X線が当たる表面をできるだけ平らにし、管球に銅(Cu)を用い下記(表 3.2)の条件 で粉末 X線回折パターンの測定を行った。

|                   | 管電流  | 管電圧  | <b>ステップ幅</b> (2 <i>θ</i> ) | 計数時間 | 測定角度範囲 $(2\theta)$ |
|-------------------|------|------|----------------------------|------|--------------------|
| RMnO <sub>3</sub> | 40mA | 40kV | 0.02°                      | 1s   | 20~110°            |
| 低次元 Co 酸化物        | 40mA | 40kV | 0.02°                      | 10s  | 10~110°            |

表 3.2: 粉末 X 線回折における測定条件

### 3.2.2 粉末X線Rietveld構造解析

先に述べたように粉末 X 線回折パターンからは、結晶構造に関する様々な情報を得る ことができる。例えば、ピーク位置から格子定数、回折プロファイルの面積(積分強度)か ら結晶構造パラメータ(分極座標、占有率、原子変位パラメータ)、プロファイルの広がり から格子歪みと結晶子サイズ、混合物中の各相の尺度因子から質量分率などが得られる。 Rietveld 法とは、予想される結晶構造のモデルから理論的に計算される回折パターンと実 際に観測された X 線回折パターンを非線形最小二乗法を用いてカーブフィットすることに より、結晶構造モデルの格子定数や原子位置などのパラメータを精密化することで、得ら れた結晶試料の結晶構造を同定する方法である。Rietveld 法によって求めた理論曲線と実 際に測定した X 線回折パターンを図 3.5 に示す。これより Rietveld 法による理論曲線が実 測値とよく一致しているのがわかる。



図 3.5: GdMnO<sub>3</sub> における Rietveld 法により得られた理論曲線 (青線) と実測に よる粉末 X 線回折強度パターン (赤丸)の比較

次に、粉末X線 Rietveld 構造解析の原理について示す。

先に述べたように Rietveld 解析では、X 線粉末回折パターンに含まれている情報を最大限 に抽出するために、実測パターンとの非線形最小二乗法によるフィッティングを行う。具体的 には、*i* 番目の測定点 (回折角:2 $\theta$ ) に対する観測強度を  $y_i$ 、計算強度を  $f(2\theta_i; x_i, x_2, x_3, \cdots) \equiv f_i(x)$ 、統計的重みを  $\omega_i(=1/y_i)$  としたとき、残差二乗和 S(x)

$$S(x) = \sum_{i} \omega_{i} (y_{i} - f_{i}(x))^{2}$$
(3.2)

を最小とする1組の可変パラメータ x を非線形最小二乗法により精密化する。

回折角  $2\theta_i$  における理論回折強度  $f_i(x)$  は Bragg 反射の強度とバックグラウンド関数  $y_b(2\theta_i)$  の和

$$f_i(x) = sS_R(\theta_i)A(\theta_i)D(\theta_i)\sum_K m_K |F_K|^2 P_K L(\theta_K)\phi(\Delta 2\theta_K) + y_b(2\theta_i)$$
(3.3)

に等しい。ここでsは回折装置や測定条件に依存する種々の定数を全て吸収させた尺度因 子、 $S_R(\theta_i)$ はBragg Brentano光学系における平板試料表面の粗さの補正因子、 $A(\theta_i)$ は 吸収因子、 $D(\theta_i)$ は Bragg Brentano 型光学系において照射幅が一定となるように発散角 を可変にした自動発散スリットを利用したときの補正因子、Kは Bragg 反射強度に実質 的に寄与する反射の番号、 $m_K$ は Bragg 反射の多重度、 $F_K$ は結晶構造因子、 $P_K$ は試料 の選択配向を補正するための選択配向関数、 $L(\theta_K)$ は Lorentz 偏光因子、 $\theta_K$ は Bragg 角、  $\phi(\Delta 2\theta_K) = \phi(2\theta_i - 2\theta_K)$ は回折プロファイル形を近似するためのプロファイル関数を示 す。Rietveld 解析における観測強度と計算強度との一致の程度を見積もるための尺度とし ては以下に示す因子が用いられる。

$$R_{\rm wp} = \left[\frac{\sum \omega_i \{y_i - f_i(x)\}^2}{\sum \omega_i y_i^2}\right]^{1/2}$$
(3.4)

$$R_{\rm e} = \left[\frac{N-P}{\sum \omega_i y_i^2}\right]^{1/2} \tag{3.5}$$

$$S = \frac{R_{\rm wp}}{R_{\rm e}} = \left[\frac{\sum \omega_i \{y_i - f_i(x)\}^2}{N - P}\right]^{1/2}$$
(3.6)

N は測定データの数、P は精密化するパラメータの数である。ここで最も重要な因子は、 分子が残差二乗和S(x) に等しい  $R_{wp}$  である。ただし、 $R_{wp}$  の分母は観測強度の総和に等 しいので、回折強度やバックグラウンド強度がこれらの値を大きく左右する。そこで、統 計的に予想される  $R_{wp}$  の最小値  $R_e$  と実際計算結果の  $R_{wp}$  とを比較するための指標 S が フィットの良さを示す実質的な尺度として役立つ。S=1 は精密化が完璧であることを示 し、S が 1.3 より小さければ、満足すべき解析結果と言える。我々のデータでは、例えば  $RMnO_3$  結晶で  $S=1.3\sim3$  の値が得られており、実験室系の X 線源で取得したデータとし ては比較的よいフィッティングが得られていると言える。

実際の解析にはプログラム RIETAN-2000 を使用した。RIETAN-2000 は Izumi が開発 した角度分散型回折法によるデータから Rietveld 解析を行うプログラムである [30]。 3.2.3 背面反射ラウエ法を用いた結晶軸の切り出し

得られた結晶試料は、誘電性及び磁性の各測定が行いやすい様に平行平板に成形する必要がある。本研究で扱った斜方晶 *R*MnO<sub>3</sub> 結晶及び低次元 Co 酸化物結晶は、どちらも大きな異方性を持つことが予想される。異方性測定を行うために、背面反射ラウエ法を用い結晶方向を調べ、結晶軸に沿った試料の切り出しを行った。ここでは、その測定原理と測定方法について示す。

まず、背面反射ラウエ法の原理について紹介する。

単結晶試料にコリメーターで細かく絞った一定方向の連続X線を入射すると、結晶の各 格子面に対する入射角はおのずから決まるので Bragg の条件を満たすような波長のX線 が選び出されて回折する。その結果、フィルム上に結晶の対称性を反映するラウエスポッ トと呼ばれる斑点群を形成する(図3.6)。この方法では、各回折斑点に対応する格子面の 方向はわかるが、格子面間隔を正確に決めることはできない。回折斑点の指数付けは他の 方法に比べ面倒であり、回折強度の評価は難しいので、結晶構造がわからないの物質の解 析には用いない。しかし、実験が簡便であるために結晶方位や対称性などを調べるのによ く用いられる。

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

図 3.6: ラウエ写真の例



ラウエ法は、結晶に対するフィルムの置き方によって背面反射型と透過型に分けられる (図 3.7)。試料には単結晶を用いるが多結晶性の試料でも入射 X 線束の断面積より大きい 単結晶が含まれていればよい。透過型では、回折線が透過できるような吸収の少ないま たは薄い試料を用いる。しかし、あまり薄すぎると回折強度が弱くなる。1/µ(µ:線吸収係 数)の2~3倍の厚さのものが適当である。背面反射型では、表面での反射を利用するので 試料の厚みに制限はない。本実験では、3軸の結晶軸の切り出しを行うため入射する試料 の厚みは大きいので背面反射型で行った。ゴニオメーターヘッドは図 3.8 のように、試料 の方位および位置を自在に変えられる試料の支持台であり、互いに垂直な2本の水平軸の まわりに回転し、試料はヘッド上方の一定の点を中心にアーク状の運動と水平面内の2方 向に水平移動ができる。ゴニオメーターヘッドの支持台は鉛直軸のまわりの回転ができ る。フィルムカセットは平板状で、入射面には黒い紙が張ってある [31]。図 3.6 に実際に 測定用の試料の結晶面を決定する際に撮ったラウエ写真を示す。これは GdMnO3 結晶の *Pbnm* setting **の** *ab* 面を表している。



図 3.8: ゴニオメーター概念図

図 3.9: ラウエ写真の測定配置

当研究室ではゴニオメーターヘッドに取り付け 可能なカーボンプレートがあり、それにエレクト ロンワックスで試料を固定した。つけ方としては、 カーボンプレートをホットプレートで温めてから エレクトロンワックスを溶かして試料を置く。その 状態でアルミなどの金属の上にカーボンプレート を置くことで冷却し、エレクトロンワックスを固 化させて試料を固定した。その試料を付けたカー ボンプレートをゴニオメーターヘッドに取り付け、



図 3.10: 結晶の固定法

実際にX線があたるように想定して作られた台にゴニオメーターを設置し、X線が試料 にあたるように位置を調節した(図3.9)。そして、RINT2100にゴニオメーターを設置し、 X線を照射した。X線管球にターゲットとして原子番号が大きいため連続X線の発生効 率の大きいタングステン(W)を用い、管電圧30kV、管電流30mA、照射時間60~90秒の 条件で測定を行った。斜方晶の結晶面が確認できたら、ゴニオメーターヘッドをダイヤモ ンドカッターに設置し、結晶面に平行に切り出しを行った。

#### 3.2.4 結晶方位の確認

ロッキングカーブ測定法により結晶面のずれを補正し、ステップスキャン法により切り 出された結晶方位の確認を行った。X線発生装置として粉末 X線測定と同様のリガク株 式会社製 RINT2100 を使用した。

まずロッキングカーブ測定の簡単な原理を示す。

この測定法  $(\theta$ スキャン法)<sup>1</sup>は、 $2\theta/\theta$  スキャン法の特徴を積極的に利用した結晶の配向

 $<sup>^{14}</sup>$ 軸面回折実験での $\omega$ スキャンに対応

性を評価する測定法である。簡単にいうと、図 3.4 における 2 $\theta$  角を固定し、 $\theta$  角を変化さ せて測定する方法である。2 $\theta$  角を固定することで、ある特定の回折線すなわちある結晶の 特定の格子面間隔からの回折線のみを検出できることになる。 $\theta$  角を変化させることで、 Bragg の条件を満足する結晶面は表面に対し  $\theta_{r}$ - $\alpha$  だけ傾くことになる (図 3.11)。 $\theta$  の回転 により、結晶面法線方向からの結晶方位のずれが測定できる。



(a) 粉末X線測定法  $(2\theta/\theta \lambda + \nu \lambda)$ 

(b) ロッキングカーブ法 ( *θ*スキャン )

乀射X線

 $d\sin\theta$ 

反射X線

図 3.11:  $2\theta/\theta$  スキャンと $\theta$  スキャン

X線が試料にあたるように、試料ホルダーに ビニールテープを歪まないように貼り、そのテー プに切り出した結晶面を貼り付けて固定した (図 3.12)。このときにテープに歪みがあると切り出 した結晶面の誤差が大きくなるので注意した。ま ず、ロッキングカーブ測定法 ( $\theta$ スキャン法)に より、切り出した結晶面のずれを調べた。この とき、X測定条件としては、管球に銅 (Cu)を使 用し、管電流 20mA、管電圧 20kV、ステップス キャン方式によるステップ幅 0.02 °( $\theta$ )、計数時 間 2~10 秒でピークが検出される測定角度範囲 で $\theta$ スキャンを行い、ピーク強度データを収集 した。



図 3.12: 試料の固定方法

測定方法としては、結晶面を確認する試料の Rietveld 解析の結果を参考にして、3 軸 (a 軸,b 軸,c 軸) についてのそれぞれのピークの角度に固定し、そのピーク角度付近を $\theta$ スキャンを行う。それぞれの軸で現れるピーク測定範囲内でピークが観測されたら、Rietveld 解析から得られたピークの角度と $\theta$ スキャンで観測されたピークの角度のずれを求め、装置の初期値 (0.226)<sup>2</sup>とそのずれの和を求め、その値で装置のゼロ点を調整した。実際の計算を式 (3.7) に示す。

結晶軸からのずれ = 
$$0.226 + \left($$
測定で得られたピーク角度  $- \frac{$ 固定した角度 $(2\theta)}{2} \right)$  (3.7)  
<sup>2</sup>標準試料である Si の粉末 X 線解析により、補正された角度 $(2007 \oplus 2 \beta \beta d c)$ 

その状態で粉末 X 線と同様な測定を行った。その結果、図 3.13 (上) のような粉末 X 線の 結果とは異なる固定した軸に対応する回折強度だけが得られた (図 3.13 (下))。



図 3.13: 粉末 X 線 (上段)、各結晶面の X 線 (下段) の回折強度パターンを表す (GdMnO<sub>3</sub>)。下段の黒, 赤がそれぞれ b 軸, c 軸に垂直な面に X 線を照 射したときの回折強度を示している。

#### 物性測定 3.3

ここでは、本研究で行った物性測定(交流複素誘電率測定、焦電流測定、磁化測定、比 熱測定)の測定原理及び測定方法について簡単に示す。また、外部圧力下での測定につい ても述べる。

#### 交流複素誘電率測定 3.3.1

交流複素誘電率測定には、Agilent Technologies 社製 HP4284A LCR meter を用い、自 作のインサートを JTM 社製 GM(Gifford-McMahon) 型冷凍機付き超伝導マグネット (最 大8T)に封入することで、5~300Kの温度範囲で零磁場及び磁場下での測定を行った。温 度調節にはクライオスタットとインサートのヒーターを用い、それぞれ Lake Shore 社製 340 Temperature Controller で制御した。

#### 複素誘電率の原理について述べる。

誘電率または比誘電率は、誘電体の基本的物性値の一つである。比誘電率とは、誘電体 を用いて作られたコンデンサーが同形同大の真空コンデンサーと比較して何倍多くの電 荷量を蓄えられるか示す物理量である。誘電率の大きさは誘電体の大きさによって決まる が、原子分極や双極子分極では分極を形成するのに時間がかかるので、交流電場中では誘 電分極に位相差が生まれ、誘電損と呼ばれるエネルギー損失が発生する。交流電界中の複 素誘電率  $\varepsilon^*$  は、真空の誘電率  $\varepsilon_0$  を用いて

$$\varepsilon^* = \varepsilon^*_r \varepsilon_0 = \varepsilon' - i\varepsilon'' \tag{3.8}$$

 $I_{C} = \omega C V$ 

と定義でき、複素誘電率の実部 & を誘電率、虚部 & を誘電損率という。

静電容量 C を持つコンデンサーに角周波数  $\omega$  の交流 電圧

$$V = V_0 e^{i\omega t} \tag{3.9}$$

を印加すると、印加電圧に対して 90°位相の進んだ 充電電流

$$I_c = \frac{\mathrm{d}Q}{\mathrm{d}t} = C\frac{\mathrm{d}V}{\mathrm{d}t} = i\omega CV \qquad (3.10)$$

が流れる。損失電流は

$$I_l = GV \tag{3.11}$$



#### 図 3.14: 電流と電圧関係

となる。ここでGは抵抗Rの逆数となる直流の伝導成分と関係する交流伝導率(コンダク タンス)である。ところが、分極が双極子分極のように時間的にゆっくりと生じる過程を 含んでいると、電流は印加電圧に対して 90°位相が進むことができず、電圧と電流の関 係は図 3.14 のようになる。

すなわち、このコンデンサーに流れる全電流は、充電電流と 損失電流の和は

$$I = I_c + I_l = (i\omega C + G)V \tag{3.12}$$

となり、全電流 I は  $I_c$  より  $\delta$  だけ位相が遅れ、電圧より  $\phi$  位相 が進む。これを等価回路に置き換えると、等価並列コンダクタ ンス G と等価並列容量 C からなる図 3.15 のようになる。また、 この等価並列容量 C は、真空の静電容量  $C_0$  を用い

$$C = \frac{\varepsilon'}{\varepsilon_0} C_0 = \varepsilon'_r C_0$$
 (3.13) 図 3.15: 等価回路

のように定義される。 $\varepsilon'_r$ は、比誘電率を表す。また、 $I_l \ge I_c$ の両電流の比には

$$\tan \delta = \frac{|I_l|}{|I_c|} = \frac{G}{\omega C} \tag{3.14}$$

の関係がある。すなわち、 $\tan \delta$  は充電電流に対する損失電流の大きさの比を表しており、 これを誘電正接という。また、角度 $\delta$  は誘電損角という。損失と呼ばれるのは、このGの 分だけジュール熱としてエネルギーが失われるためである。

式 (3.12) で表される全電流 I を式 (3.13) と式 (3.14) を用いて、

$$I = (i\omega\varepsilon_r'C_0 + \omega\varepsilon_r'C_0\tan\delta)V \tag{3.15}$$

と表される。ここで比複素誘電率  $\varepsilon_r^*$  は、比誘電率  $\varepsilon_r'$  と比誘電損失  $\varepsilon_r''$  から

$$\varepsilon_r^* = \varepsilon_r' - i\varepsilon_r'' \tag{3.16}$$

と定義される。また、

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'} = \frac{\varepsilon''_r}{\varepsilon'_r} \tag{3.17}$$

とおくと、式 3.15 は、式 3.8, 式 3.16, 式 3.17 から

$$I = (i\omega\varepsilon'_r + \omega\varepsilon'_r\tan\delta)C_0V = (i\omega\varepsilon'_r + \omega\varepsilon''_r)C_0V = i\omega\varepsilon^*_rC_0V$$
(3.18)

となる。誘電率 $\varepsilon'$ , 誘電損率 $\varepsilon''$ , 誘電正接 $\tan \delta$  は、いずれも物質の固有な量であり、温度 や周波数に依存して変化する。本研究では次のような比誘電率および比誘電損率

$$\varepsilon_r' = \frac{C}{C_0} = \frac{\varepsilon'}{\varepsilon_0} \tag{3.19}$$

$$\varepsilon_r'' = \frac{G}{\omega C_0} = \frac{\varepsilon''}{\varepsilon_0} \tag{3.20}$$

を実験から求めた。

今後、複素誘電率の実部  $\varepsilon'$ を真空の誘電率  $\varepsilon_0$  で割った無次元量の比誘電率  $\varepsilon'_r$  のことを 誘電率  $\varepsilon$  と記述することにする。

28



次に、測定方法について述べる。

複素誘電率測定に用いる試料は、3×3×0.5mm<sup>3</sup>の大きさ<sup>3</sup>の平行平板に切り出したもの を用いた。試料の両面に焼き付け銀ペーストで電極を形成し、4本の導線を取り付けた。 これを、自作したインサートに取り付けクライオスタットに封入し測定を行った。温度範 囲、温調レート、周波数、交流電圧、磁場スイープレートなどの測定条件は、測定する試 料ごとに最適だと考えられるものを探し決定した。表 3.3 に典型的な測定条件を示す。

|                   | 温度範囲   | 温調レート                     | 周波数    | 交流電圧 | 磁場スイープレート             |
|-------------------|--------|---------------------------|--------|------|-----------------------|
| RMnO <sub>3</sub> | 5~60K  | 4K/min                    | 10kHz  | 10V  | 0.0125 T/s            |
| 低次元 Co 酸化物        | 5~300K | $1 \sim 4 \mathrm{K/min}$ | 100kHz | 10V  | $0.0125 \mathrm{T/s}$ |

表 3.3: 誘電率測定の測定条件

#### 3.3.2 焦電流測定

試料の自発電気分極の測定には、強誘電体が持つ焦電性を利用した。定常状態では、強 誘電相においても外部からの電荷や内部の電気伝導によって、表面電荷が中和されてい る。この状態から温度を上昇させると、自発電気分極はキュリー温度(T<sub>C</sub>)で消滅する。こ のとき試料表面の電荷の中和が破られ、電荷が出現する。この現象を焦電性といい、この 電荷量の変化を測定することで自発電気分極の温度依存性を見積もることができる。測定 には、20fA までの微少電流が測定可能で、505V までの高電圧印加が可能な Keithley 社製 6487 Picoammeter/Voltage Source を用い、自作のインサートを JTM 社製 GM(Gifford-McMahon)型冷凍機付き超伝導マグネット(最大 8T)に封入することで、5~300K の温度 範囲で零磁場及び磁場下での測定を行った。測定される電流が微少であるため、インサー トに取り付けた抵抗温度計を用いると、ノイズが入り測定することができない。そこで、 温度調節にはクライオスタットのヒーターのみを用い、Lake Shore 社製 340 Temperature Controller で制御した。

一般に、強誘電体の自発電気分極  $P_S$  は温度の上昇に伴って減少しキュリー温度  $T_C$  で 消滅する。このような場合、温度の増加は自発電気分極の変化により試料表面の電荷中和 を破ることになり、電荷が出現する。その電荷量の変化を電圧あるいは電流として測定す れば自発電気分極の温度特性が得られる。また、強誘電体はすでに自発分極に基づく多分 域構造を有するので、直流電場を印加し分域を一方向に揃える分極処理 (ポーリング)を しておく必要がある。本研究では、分極を持たないキュリー点  $T_C$  以上で直流電圧を印加 し、キュリー点  $T_C$  以下に下げてから直流電圧 (ポーリング電圧)を切り、試料を一定温度 で長時間短絡状態にすることで試料中の残留電荷を十分放電させ、自発分極を過大評価し

<sup>&</sup>lt;sup>3</sup>誘電率測定では、なるべく「厚さの薄い」試料がよい。また、焦電流測定では、「面積の広い」試料が 測定に適している(面積に比例して焦電流が大きくなるので)。誘電率測定に用いた試料を焦電流測定にも 用いるので、試料は「薄く、面積の広い平行平板」がよい。

ないようにした。このとき、焦電流 *i*<sub>P</sub> は以下の式で表せる。

$$i_P = \frac{\mathrm{d}Q}{\mathrm{d}t} = A \frac{\mathrm{d}P_S}{\mathrm{d}t} = A \frac{\mathrm{d}P_S}{\mathrm{d}T} \frac{\mathrm{d}T}{\mathrm{d}t} \tag{3.21}$$

ここで、A は電極面積、dT/dt は温度の時間変化率であり、 $dP_S/dT$  は自発電気分極の温度変化率である。この $dP_S/dT$  は焦電係数と呼ばれている。自発電気分極  $P_S$  は、式 (3.21)から次のように導くことができる。

$$P_S = \frac{1}{A} \frac{1}{\frac{\mathrm{d}T}{\mathrm{d}t}} \int i_P \mathrm{d}T \tag{3.22}$$

また、外部磁場変化での自発分極  $P_S$ の変化によって生じる変位電流は厳密な意味での 焦電流ではないが、式 (3.21)の温度 Tを外部磁場 B で置き換えて求めた。

実際の実験結果から求まる自発電気分極の温度依存性の測定結果を図 3.16 に示す。



図 3.16: 焦電流の温度依存性 (a) の実験結果から積分して見積もった自発電気 分極の温度依存性 (b)(Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub>,*a* 軸方向)。

焦電流測定に用いる試料は、誘電率測定のときに用いたものと同じものを使用した。こ れを、自作したインサートに取り付けクライオスタットに封入し測定を行った。通常の焦 電流測定は、ポーリング電場を印加したまま、強誘電転移温度を横切るように冷却してい き、低温でポーリング電場を取り除いた後、昇温過程にて測定を行う。この方法だと、降 温過程での自発電気分極の振る舞いを観測することができない。そこで今回は、ポーリン グ電場を印加しながら冷却する過程においても焦電流を測定することで、降温過程での自 発電気分極の振る舞いを観測することに成功した。ただし、これでは電場を印加したまま 測定を行っているために、電場を取り除いた状態でも「自発的に」電気分極を持っている か確認する必要がある。今回の実験では降温過程にて観測された電気分極が、電場を取り 除いた状態でも存在していることを確認し<sup>4</sup>、「自発電気分極」であることを確かめた。ま た、強誘電体は直流電圧の符号を変えたとき焦電流の向き(自発電気分極の向き)が反対 になる。そこで、ポーリング電場を反転することで焦電流の方向が反転すれば強誘電性で あるといえる。観測されたすべての自発電気分極に関してこの操作を行い、強誘電性であ ることを確認した<sup>5</sup>。温度範囲、温調レート、ポーリング電場、磁場スイープレートなど

<sup>&</sup>lt;sup>4</sup>電気分極を持っている領域で温度を止め、電場を取り除いた後、通常の昇温過程での焦電流測定を行う ことで確認できる。

<sup>&</sup>lt;sup>5</sup>Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>のみ例外 (4.2 参照)。

の測定条件は、測定する試料ごとに最適だと考えられるものを探し決定した。表 3.4 に典型的な測定条件を示す。

|                   | 温度範囲   | 温調レート                     | ポーリング電場             | 磁場スイープレート  |
|-------------------|--------|---------------------------|---------------------|------------|
| RMnO <sub>3</sub> | 5~60K  | 4K/min                    | $500 \mathrm{kV/m}$ | 0.0125 T/s |
| 低次元 Co 酸化物        | 5~300K | $1 \sim 4 \mathrm{K/min}$ | $500 \mathrm{kV/m}$ | 0.0125 T/s |

#### 3.3.3 磁化測定

磁化測定には、PPMS-9(Physical Property Measurement System)の交流帯磁率測定測 定オプションを使用した。

本研究で使用した磁化測定装置は、電磁誘導を測定原理に使用しており、ピックアップ コイルの中で試料を動かし、そのときに生じた微少な電圧の変化を検出し、磁化の大きさ を見積もる。図 3.17(a) に測定原理の模式図を示す。コイルの中で磁性体が動くことによ リコイルを貫く磁束 Φ が時間的に変化する。このときコイルに発生する誘導起電力 V の 変化は  $V = -d\Phi/dt$  と表すことができる。試料をコイルの中で走査軸 x に沿って動かし た場合、コイルに誘導される電圧の変化は図 3.17(a) のようになる。この微弱な電圧変化 を検出し、試料の位置の関数として求めることにより、試料の磁化の値を求めることがで きる。

本研究では、図 3.17(b) に示すように、試料を非磁性のストローの中にワニスで固定 したものを測定に用いた。試料を固定したストローを磁化測定装置用のインサートに付 け、PPMS-9 にセットし測定を行った。測定の温度範囲は2K~300K、外部印加磁場範囲 は-8T~8T とした。



図 3.17: 磁化測定の原理 (a),磁化測定用試料の準備 (b)

#### 3.3.4 比熱測定

比熱測定は、PPMS-9の比熱測定オプションを使用した。

本研究で使用した PPMS の比熱オプションでは、緩和法を用い比熱を測定している。微 少時間における熱の流入及び流出は以下の式で表すことができる。

$$C_{\text{Total}} \frac{\mathrm{d}T(t)}{\mathrm{d}t} = -K_W(T(t) - T_b) + P(t)$$
(3.23)

ここで、 $C_{\text{Total}}$ は測定試料とプラットフォームの比熱を合わせたもの、T(t)は測定試料と プラットフォームの温度、 $T_b$ は熱浴の温度、P(t)はヒーターのパワー、 $K_W$ はワイヤーの 熱伝導である。この式を解くことでヒーターを切った後の緩和の様子を得ることができ、 以下のような式で表すことができる。

$$T(t) - T_b = T_0 \exp\left(\frac{-t}{C_{\text{Total}}/K_W}\right)$$
(3.24)

ここで  $T_0 = T(t = 0)$  であり、ヒーターを切ったときの試料 (+プラットフォーム) と熱浴 との温度差である。ワイヤーの熱伝導が既知であるならば、ヒーターを切った後の緩和時間  $\tau = C_{\text{Total}}/K_W$  を測定することで  $C_{\text{Total}}$  を求めることができる。この  $C_{\text{Total}}$  からバック グラウンド (プラットフォーム) の比熱を差し引くことで試料の比熱を求めることができる。



図 3.18: 緩和法による比熱測定の模式図

しかし、現実の系では試料とプラットフォームでは緩和時間が異なるため、2つの熱接触が悪く、全体として1つの緩和曲線でフィッティングすることができない場合、2つの 緩和時間を持つものとしてフィッティングを行う必要がある。これを27モデルと呼び、 PPMSの比熱オプションでは27モデルを用い、試料の比熱を見積もっている。

図 3.19 に示すように、比熱測定用パックは熱浴と抵抗温度計・ヒーターとの間を接続ワ イヤーにより空中で支えられたプラットフォームからなる。測定時には、プラットフォー ムと試料の熱接触をよくすると共に、試料を固定するためにアピエゾングリス<sup>6</sup>を使用し た。はじめにバックグラウンとして、アピエゾングリスとプラットフォームだけの比熱測 定を行う (アデンダ測定)。その後、試料をプラットフォームに乗せ、全体の比熱を測定 し、そこからアデンダの比熱を差し引くことで試料の比熱を求めた。比熱測定中は、接続 ワイヤー以外からの熱の流入や流出を防ぐためサンプルスペースを高真空状態にしてお く。本研究には、2×2×0.5mm<sup>3</sup>(10mg) 程度の大きさの試料を用いた。

<sup>&</sup>lt;sup>6</sup>今回は、60K 以下で測定を行ったので、アピエゾン N グリスを使用した。室温付近やそれ以上の高温 で測定を行う場合はアピエゾン H グリスを使用する。



─ プラットフォーム

図 3.19: 比熱測定用パックの模式図とパックの写真

#### **3.3.5** 外部静水圧下での測定

外部静水圧の印加にはクランプ式の圧力セルを用いた。プレス機により加圧し、室温 で1GPa程度の圧力を印加することができる。誘電率・焦電流測定同様、自作のインサー トを用いクライオスタットに封入することで、5K~300Kの範囲で測定を行うことができ る。本研究では、外部静水圧下で誘電率及び焦電流測定を行った。



図 3.20: 圧力セルの模式図

静水圧印加の圧力媒体としてはフロリナート FC-70 を用いた。図 3.20 に圧力セルの模 式図を示す。テフロンカプセル中にフロリナートと試料を封入し、圧力セル中でテフロン カプセルを加圧することで、フロリナートを通し試料に圧力を印加することができる。加 圧には油圧プレス機を用い、そのプレス機の圧力計の表示を使い、室温での印加静水圧の 大きさを見積もった。しかし、今回の測定領域である 60K 以下の低温では、フロリナー トが凝固し室温のときよりも圧力が低下する。低温 (5K) での圧力較正が以下のような式 で報告されている [32]。

$$P[\text{GPa}] = P_0[\text{GPa}] \times 1.104 - 0.325 \tag{3.25}$$

これを用い室温での圧力 *P*<sub>0</sub> から低温での圧力 *P* を求めた。ただし実際の圧力とは、いくらか差があると考えられる。

## 第4章 実験結果

## 4.1 RMnO<sub>3</sub>結晶における電気磁気特性

TbMnO<sub>3</sub>において巨大電気磁気効果が観測されてから *R*MnO<sub>3</sub>における磁性強誘電相の研究は、盛んに行われている (2.3.2 参照)。本研究では、*R*MnO<sub>3</sub> で *R* イオンを変化させることにより斜方晶歪を制御 (化学圧力制御) し磁性と誘電性の相変化を調べると共に、それらの相の相境界において外部磁場・外部圧力による相制御を試みた。ここでは、その結果について示す。

4.1.1 化学圧力効果 (R 置換効果)



図 4.1: 降温過程における *R*MnO<sub>3</sub> の電気磁気相図 (PM:常磁性相, PE:常誘電 相, AFM:反強磁性相, FE:強誘電相)

2.3.2 で述べたように、 $RMnO_3$  結晶では斜方晶歪 (Mn-O-Mn ボンド角)の大きさにより その物性が大きく変化し、複雑な電気磁気相図を作り出すことが知られている。そこで  $Eu_{1-y}Gd_yMnO_3$ 結晶や $Gd_{1-y}Tb_yMnO_3$ 結晶など混晶系を作製することで化学圧力を制御し、斜方晶歪を精密かつ系統的に変化させた。それらの単結晶試料における誘電率、自発電気分極、磁化、比熱を測定することで得られた  $RMnO_3$  の電気磁気相図を図 4.1 に示す。R サイトのイオン半径を小さくしていくことにより (斜方晶歪を大きくしていくことに対応)、電気磁気相が A タイプ反強磁性常誘電相(A-AFM,PE)⇒ 自発電気分極をa 軸方向に持つ強誘電相 ( $FE(P \parallel a)$ )⇒ 自発電気分極をc 軸方向に持つスパイラル反強磁性強誘電相 (Spiral AFM,FE( $P \parallel c$ )) と変化していくことがわかる<sup>2</sup>。このスパイラル反強磁性強強誘電相では、2.2 に示した「Dzyaloshinskii-Moriya 相互作用の逆効果による強誘電性発現のモデル」に従い、スパイラル磁気構造が強誘電性を誘起している。また、 $FE(P \parallel a)$ では、2.2 の最後にも示したように、磁気変調波数  $q_S$  が 1/4 であることが確認されている [29]。 $FE(P \parallel a)$  においては「Goodenough-Kanamori 則の逆効果による強誘電性発現のモデル」を適用しても自発電気分極を発現できるために、どちらのメカニズムで強誘電性が発現しているかはわかっていない。

このように、Rを変化させ化学的圧力を制御することでAタイプ反強磁性常誘電相や と2種類の強誘電相 (FE( $P \parallel a$ ),FE( $P \parallel c$ ))が現れることがわかった。一般に、相境界付 近では外部から摂動 (磁場、圧力など)を与えることで相転移を起こし、大きな応答を得 られることが知られている。そこで、Aタイプ反強磁性常誘電相 (A-AFM,PE)と強誘電 相 FE( $P \parallel a$ )の相境界に位置する GdMnO<sub>3</sub> と FE( $P \parallel a$ ) と FE( $P \parallel c$ )の相境界に位置す る Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub> の物性について詳しく示していく。

<sup>&</sup>lt;sup>1</sup> 強磁性面が反強磁性的に層状に積み重なっている磁気構造。collinear な磁気構造であり、強誘電性を示さない。RMnO<sub>3</sub> ではスピンがc軸方向に傾いているために、c軸方向に弱い強磁性を示す。

<sup>&</sup>lt;sup>22</sup> つの相にまたがっている領域が存在するが、それらの物質は相境界に位置し、2 つの相が競合することで複雑な物性を示す。その物性については後で詳しく述べる。

① *A* タイプ反強磁性常誘電相と強誘電相 (*P* || *a*) の相境界 (GdMnO<sub>3</sub>)

ここでは、 $GdMnO_3$ における物性の詳細について述べる。図 4.2(降温過程),図 4.3(昇温 過程)に $GdMnO_3$ の零磁場下での誘電率 (a)、自発電気分極 (b)、磁化 (c)<sup>3</sup>及び比熱 (d)の 温度依存性を示す。 $GdMnO_3$ は、A タイプ反強磁性常誘電相と強誘電相の相境界に位置 するために、これら 2 つの相の間の競合によって複雑な相転移を起こす。これについて以 下では、降温過程と昇温過程に分けて詳しく示していく。



図 4.2: GdMnO<sub>3</sub> 結晶の零磁場下における誘電率 (a)、自発電気分極 (b)、磁化 (c)、比熱 (d) の温度依存性 (降温過程)

降温過程について、高温側から順に見ていく。図 4.1 にあるように、42K 以上では常磁性・常誘電性を示しているが 42K で不整合正弦波的反強磁性常誘電相へと相転移する。この転移は図 4.2 では低温領域に注目するため省略しているが、誘電率や比熱で転移が確認できる。さらに温度を下げていくと、24K 付近  $(T_{\rm FE})$  から自発電気分極が立ち上がっていることがわかる。またその温度において誘電率でも発散的なピークが観測されていることから、 $T_{\rm FE}$  で強誘電転移しているといえる。この自発電気分極は、電場を反転すると反転すること (強誘電性の条件) と電場を取り除いた後にも自発的に分極していることを確認している。その後、19K 付近  $(T_{A-AFM})$  で c 軸方向の磁化の立ち上がりが観測されている。これは、c 軸方向にキャントした A タイプ反強磁性相への転移を意味している。このとき、24K で出現した自発電気分極は消失する。つまりこの相は、A タイプ反強磁性常誘

<sup>&</sup>lt;sup>3</sup>磁化測定では、0.1Tの磁場を印加しているが、零磁場での磁化の振る舞いと本質的には変わらないと 考えてよい。

電相といえる。さらに温度を下げていくと、5K 付近 ( $T_{Gd}$ ) で再度自発電気分極の立ち上がりが観測されている。これに伴い、誘電率・磁化・比熱でも異常が観測されている。この強誘電転移は、Gd の 4f モーメントの秩序<sup>4</sup>に起因すると考えられる。このように降温 過程では、強誘電相 → 常誘電相 → 強誘電相というようにリエントラント相転移が観測された。このリエントラント相転移は、一見すると秩序相 → 無秩序相 → 秩序相という相転移であり、エネルギー的に不自然であるように見える。しかし、これらの誘電性は磁気構造に起因しているため磁気秩序を考え、強誘電性を誘起する磁気構造<sup>5</sup> → A タイプ反強磁性 → Gd4f モーメント秩序を伴う磁気構造<sup>4</sup> と見るのが正しい。磁気構造が変化していると考えると必ずしも不自然ではないといえる。



図 4.3: GdMnO<sub>3</sub> 結晶の零磁場下における誘電率 (a)、自発電気分極 (b)、磁化 (c)、比熱 (d) の温度依存性 (昇温過程)

次に、昇温過程について見ていく。低温では、Gd o 4f = - x > b o Reverse For Reverse Provided Action (Construction) (Construction)

<sup>&</sup>lt;sup>4</sup>磁化が抑制されていることから Gd4f 磁気モーメントは、Mn3d スピンと逆方向に秩序していると考え られる [33] が、詳しい磁気構造についてはわかっていない。しかし、Mn3d スピンの磁気変調波数  $q_{Mn}$  は、 1/4 であることがわかっており [29]、「GK 則の逆効果」と「DM 相互作用の逆効果」どちらのモデルを用 いても強誘電性発現を説明することができる。

<sup>&</sup>lt;sup>5</sup>詳しい磁気構造はわかっていない。強誘電性発現のメカニズムについても「GK 則の逆効果」と「DM 相互作用の逆効果」のどちらになっているかもわかっていない。

が観測されていたが、昇温過程ではこの強誘電相は消失し、22K(*T*<sub>A-AFM</sub>)で *A* タイプ反 強磁性常誘電相から不整合正弦波的反強磁性常誘電相へと転移する。このように、昇温過 程ではリエントラントな振る舞いは観測されない。

GdMnO<sub>3</sub>の零磁場下における振る舞いをまとめたものを図 4.4 に示す。



図 4.4: GdMnO<sub>3</sub>の零磁場下における磁性・誘電性の温度依存性。上の矢印が 降温過程、下の矢印が昇温過程を、上下に誘電性、中央に磁性を示す。 (PM:常磁性相, PE:常誘電相, AFM:反強磁性相, FE:強誘電相)

以上のように、GdMnO<sub>3</sub>では、「大きな温度ヒステリシス」と「リエントラント相転移」 が観測されている。これらは、GdMnO<sub>3</sub>特有の現象であり、マルチフェロイック物質の中 でもあまり見られていない現象である。このような特性をいかした「外部磁場による相制 御」や「メモリ効果」(4.1.2)、「圧力による相制御」(4.1.3)についてそれぞれの節で示す。



② 2つの強誘電相  $(P \parallel a \operatorname{\mathsf{ll}} e \operatorname{\mathsf{ll}})$ の相境界  $(\operatorname{Gd}_{0.65}\operatorname{Tb}_{0.35}\operatorname{MnO}_3)$ 

図 4.5: Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub> 結晶の零磁場下における誘電率 (a)、自発電気分極 (b)、磁化 (c)、比熱 (d) の温度依存性。○は降温過程、●は昇温過程を 示している。

ここでは、自発電気分極をa軸方向に持つ強誘電相とc軸方向に持つ強誘電相の 相境界に位置する Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub> における物性の詳細について述べる。図 4.5 に Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub>の零磁場下での誘電率 (a)、自発電気分極 (b)、磁化<sup>6</sup>(c) 及び比熱 (d) の温度依存性を示す。(b)を見てわかるようにこの物質では、自発電気分極をa軸方向とc軸方向に持っている。これは、この物質が2つの相の相境界に位置していることによると 考えられる。また、誘電率・自発電気分極には温度ヒステリシスが観測されている。その 物性について降温過程・昇温過程を分けてみていく。降温過程では、22K以下でa軸方向 に自発電気分極を持ち、強誘電性を示している。この自発電気分極は、10Kから22Kの 間ではa軸方向が支配的であるが、10K以下になるとa軸方向の自発電気分極は抑制され ていき、反対にc軸方向の自発電気分極が立ち上がっていく。同時にa軸方向の磁化の減 少が観測されている。このような自発電気分極の方向の変化は、自発電気分極を*a*軸方向 に持つ強誘電相と*c*軸方向に持つ強誘電相の2つが競合していることで起きていると考え られる。このことから、外部から外部磁場(4.1.2)、外部圧力(4.1.3)などの摂動を加える ことで大きな物性の変化を引き起こすことが期待できる。これについては、後で述べる。 昇温過程でも、温度ヒステリシスを持つので転移温度は上昇しているが降温過程と同じ振 る舞いが観測されている。また、自発電気分極をa軸、c軸方向どちらにも持っている領 域  $(10K\sim20K)$  が存在するが、このような状態は  $RMnO_3$  の他の組成では観測されておら

ず、この状態が何に起因しているか、2相分離状態ではないものとして、以下に2つの可 能性について考えてみる。

モデル1:1方向の自発電気分極



図 4.6: モデル1の模式図 (a)。モデル1による 分極の a 軸方向からの傾き (緑) 及び合 成自発電気分極の大きさ (紫)の温度依 存性 (昇温過程)(b)。

このモデルは、*ac*面内の、ある方向に 自発電気分極を持っており、その a 軸方 向の成分と c 軸方向の成分をそれぞれ観 測しているというものである(図4.6(a)参 照)。この場合、2方向の自発電気分極の 大きさから、もとの自発電気分極の傾き 角度を計算から見積もり温度変化に対し てプロットしたものを図 4.6(b) に示す。 これからわかるように、このモデルでは 自発電気分極が温度を上昇させることに よって、*c*軸方向から*a*軸方向へと回転し ていることになる。このとき、合成した 自発電気分極の振る舞いに不自然な飛び のようなものはみられなかった。このモ デルを実証するには、磁気構造や原子変 位などを明らかにする必要があると考え られる。自発電気分極を*a*軸方向に持つ 相における強誘電性発現のメカニズムは スパイラル磁気構造により逆 DM 相互作 用を通して強誘電性を発現していること が明らかにされている。これから、この モデルが正しいとすれば a 軸方向に持つ

相もこのメカニズムにより強誘電性が発現しているのではないかという推測ができる。

#### モデル2:電場による相転移

このモデルは、誘電率、焦電流測定を行うときに印加した電場(誘電率:AC,50kV/m、焦 電流:DC,500kV/m)によって相転移が起きたというものである。つまり、a軸方向に電場 を印加した場合、a軸方向に自発電気分極を持つ相が安定化し、逆にc軸方向に電場を印 加した場合、c軸方向に自発電気分極を持つ相が安定化するのではないかという推測であ る。実際に測定を行う場合は、測定方向に電場を印加する必要があるために、測定方向の 自発電気分極が安定化する。このため、2方向に自発電気分極が存在するように見える。 このモデルの問題点は、このような電場強度によって自発電気分極の方向を変えることが できるのかというところにある。一般に、電場は磁場など他の外場に比べエネルギース ケールが小さく、影響を与えづらいとされている。そのような電場を用いて相転移を起こ すことが可能であるか疑問は残るが、この物質は相境界に位置していることから、電場の ような小さな摂動で相転移が起きても不思議ではない。このモデルを実証するには、電場を印加することによる磁気構造や結晶構造の変化を明らかにする必要があると考えられる。

#### 4.1.2 外部磁場効果

ここでは、外部磁場を用いて相制御を試みた実験の結果について示す。今回、相境界近 傍に位置する物質に外部磁場を印加することで相制御を行うことに成功したので、それに ついて示す。

① A タイプ反強磁性常誘電相と強誘電相の相境界 (GdMnO<sub>3</sub>)

GdMnO<sub>3</sub>における零磁場下での物性については、4.1.1に示した。注目すべき点として は、降温過程においてリエントラントな振る舞いがみられていることと、大きな温度ヒス テリシスを持つことがあげられる。ここでは、大きな温度ヒステリシスをうまく制御する ことで観測されたメモリ的挙動について紹介する。



図 4.7: GdMnO<sub>3</sub>の外部磁場下 (b 軸方向に印加) での a 軸方向の誘電率 (a),(c) 及び自発電気分極 (b),(d) の温度依存性 ((a),(b):降温過程、(c),(d):昇 温過程)

まず、 $GdMnO_3$ の外部磁場効果について紹介する。図 4.7 に  $GdMnO_3$ の外部磁場下(b 軸方向に印加)での a 軸方向の誘電率(a),(c)及び自発電気分極(b),(d)の温度依存性を示す ((a),(b):降温過程、(c),(d):昇温過程)。これをみてわかるように、磁場を b 軸方向に印加 することにより強誘電相(FE( $P \parallel a$ ))が安定化していることがわかる。また、FE( $P \parallel a$ ) には、低温でみられる Gd 4f モーメントの秩序に起因する相と 20K 以上の温度で転移す る相の 2 種類の相があることがわかる(図 4.4 参照)。どちらの強誘電相も b 軸方向に磁場 を印加することで転移温度が上昇していることが確認できる。ここで、4T の磁場を印加

したときの振る舞い(図 4.7 緑色のグラフ)に注目する。降温過程をみると、24K 付近で強 誘電転移した後、18K付近から自発電気分極が抑制されていく。この振る舞いは、転移温 度は変わっているが図4.2でみた零磁場下での振る舞いと同じになっている。しかし、零 磁場ではその後自発電気分極が消えているのに対し、4Tの磁場下では自発電気分極が消 えずに残っている (図 4.7 緑色のグラフ参照)。このときの OT と 4T の誘電率の振る舞い を比べると (18K~10K の間では) 変化はみられない。このことから、A タイプ反強磁性を 示していると考えられる。しかし、磁場をb軸方向に印加しながらc軸方向の磁化を測定 することが困難であることから断定することはできない。このように4Tの磁場下では自 発電気分極を持っているにもかかわらず、Aタイプ反強磁性常誘電性的振る舞いが観測さ れている(17K~13K)。ここでは、Aタイプ反強磁性常誘電相と強誘電相が混ざり合って いると考えられるが、その詳細についてはわからない。その状態を予想すると「2つの相 が混在している状態」や「2つの性質を併せ持った新しい状態7」などが考えられる。こ のような状態は、外部静水圧を印加したときにも観測されている<sup>8</sup>。この状態では、強磁 性 $^9$ と強誘電性を同時に示していることから $CoCr_2O_4$ のような「磁場誘起自発電気分極反 転」など特殊な効果が期待できる。つまり、 $GdMnO_3$ において強磁性 (c軸方向)と強誘電 性(a軸方向)が同時に現れている領域で、その磁化を反転させることにより自発電気分極 を反転できると考えられる。しかし、b軸方向に磁場を印加したまま、c軸方向の磁化を 制御する (c 軸方向に磁場を印加する) ことが困難であるために  $GdMnO_3$  では「磁場誘起 自発電気分極反転」のような効果は観測されていない。

図4.8に磁場をb軸方向に印加したときの電気磁気相図を示す。





低温の FE(P || a) に注目すると、大きな温度ヒステリシスがあり、その温度ヒステリ シスが磁場の増加に伴って、高温側にシフトしていることがわかる。また、この領域で

 $<sup>^{7}</sup>$ 例えば、2.3.3 で示した  $CoCr_{2}O_{4}$  にみられるようなコニカル磁気構造など。

<sup>&</sup>lt;sup>8</sup>外部静水圧効果については、4.1.3で詳しく述べる。

 $<sup>{}^9</sup>R$ MnO<sub>3</sub> の A タイプ反強磁性相では、c 軸方向にスピンが傾いていることにより、c 軸方向に強磁性成分を持つ。

は強誘電転移に伴い誘電率が一次転移的に飛びがみられる (図 4.7 参照)。零磁場下での誘 電率・自発電気分極・磁化の振る舞い (図 4.2, 図 4.3) から、誘電率の大きなとき ( $\varepsilon \simeq 18$ ) は強誘電性、小さなとき ( $\varepsilon \simeq 16.5$ ) は A タイプ反強磁性常誘電性を示していることがわ かる。



図 4.9: GdMnO<sub>3</sub>の外部磁場下 (b 軸方向に印加) での誘電率の磁場依存性

図 4.9 に GdMnO<sub>3</sub> の誘電率の磁場依存性 (b 軸方向に磁場を印加)を示す。 $0T \rightarrow 8T \rightarrow -8T \rightarrow 0T$  の順で磁場を変化させたときの誘電率を測定している。12K では磁場を印加していくことで 5T 付近で誘電率が急激に増大している。先ほど述べたように誘電率の大きなとき ( $\varepsilon \simeq 18$ ) は強誘電性を示すことから A タイプ反強磁性常誘電相から強誘電相へと転移していることがわかる。印加磁場を減少させていったときは、2T 付近で強誘電相へと転移している。一方、7K では磁場を印加していくと 1T 付近で強誘電転移し、以降磁場を取り除いた状態でも強誘電状態を保ち続けている。

これを相図にまとめたものが図 4.10 である<sup>10</sup>。12K では、磁場を印加していくと 5T 付 近で相境界を横切り強誘電性を示すようになる ((a) 上の矢印)。その後、8T から印加磁 場を小さくしていくと 2T 付近で再び相境界を横切り A タイプ反強磁性常誘電相へと転移 する ((b) 上の矢印)。それに対し、7K では磁場を印加して印加していくと 1T 付近で強誘 電相へと転移する ((b) 下の矢印)。この振る舞いは 12K のときと同じなのだが、8T から 印加磁場を小さくしていくときには相境界を横切らず、強誘電性を示したままとなってい る。これは、7K がヒステリシスの内部に位置するため、強誘電状態からは相境界を横切 ることができずに A タイプ反強磁性常誘電相に戻ることができないためである。

この振る舞いは、温度や磁場を制御することで2つの状態(強誘電状態( $FE(P \parallel a)$ )と 常誘電状態(A-AFM,PE))を可逆的に行き来することができると共に、7K での振る舞い のように磁場を取り去った後でも磁場によって相転移した状態を永続的に保持できるとい うことからメモリ的挙動と呼ぶことにする。実際に、強誘電状態と常誘電状態をそれぞれ 「on」「off」とすることでメモリとして機能させることができると考えられる。メモリ的 挙動は、 $GdMnO_3$ における強誘電転移が温度・磁場に対して大きなヒステリシスを持つ ために起きる現象であり、他の磁性強誘電体ではみられない現象である。この大きなヒス

<sup>&</sup>lt;sup>10</sup>図 4.10 は、図 4.8 と同じものであるが、ここでは低温領域の温度ヒステリシスに注目しているため、他の相を省略している。また、一定磁場下での温度スキャンによる結果から転移温度を見積もっている。



図 4.10: GdMnO<sub>3</sub> の外部磁場下 (b 軸方向に印加) での電気磁気相図 ((a) 磁場 増加過程,(b) 磁場減少過程)

テリシスが GdMnO3 における磁性強誘電相の一つの特徴といえる。

② 2つの強誘電相 ( $P \parallel a$ 相と $P \parallel c$ 相)の相境界 ( $\mathbf{Gd}_{0.65}\mathbf{Tb}_{0.35}\mathbf{MnO}_{3}$ )

 $Gd_{0.65}Tb_{0.35}MnO_3$ では、先に述べたように 2 つの強誘電相 (FE( $P \parallel a$ ) と FE( $P \parallel c$ )) の相境界に位置している (4.1.1 参照)。外部磁場下での振る舞いは他の組成とは大きく異なっており、 $Gd_{0.65}Tb_{0.35}MnO_3$ 特有の奇妙な現象が観測されているので、ここではそれについて述べる。



図 4.11: Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub> の外部磁場下 (a 軸 方向に印加)での自発電気分極の磁場依 存性 (●磁場増加過程、○磁場減少過程) 図 4.11 は、 $Gd_{0.65}$ Tb<sub>0.35</sub>MnO<sub>3</sub>の外部磁 場を a 軸方向に印加したときの自発電気 分極の磁場依存性を示す。a 軸方向、c 軸 方向どちらの自発電気分極も 1T 付近に 変曲点を持つことがわかる。a 軸方向の 自発電気分極の振る舞いに注目すると、 磁場を印加していくことで大きさが負に なっていることがわかる。これは、磁場に より自発電気分極の方向が反転したもの と考えられる。このような磁場による自 発電気分極の反転は、CoCr<sub>2</sub>O<sub>4</sub> [9](2.3.3 参照)やTbMn<sub>2</sub>O<sub>5</sub> [19]で観測されている が、RMnO<sub>3</sub>では報告されていない。今回 観測された磁場誘起自発電気分極反転は、  $(P \parallel a) \ge FE(P \parallel c)$ が競合していること

この組成が相境界に位置し2つの強誘電相(FE(*P* || *a*)とFE(*P* || *c*)が競合していること に起因していると考えられるが、詳しいメカニズムについてはわかっていない。

#### 4.1.3 外部静水圧効果

ここでは、外部静水圧を用いて相制御を試みた実験の結果について示す。*R*サイト置換による化学的圧力の制御では化学置換に起因する局所的歪み(ランダムネス)の効果が入ってきてしまうが、外部静水圧を用いることで、ランダムネスの効果を入れずにクリーンな相制御が可能である。今回、相境界近傍に位置する物質に外部圧力を印加することで 強誘電性を発現させることに成功したので、それについて示す。

① A タイプ反強磁性常誘電相と強誘電相の相境界 (GdMnO<sub>3</sub>)



図 4.12: GdMnO<sub>3</sub>の外部圧力下での *a* 軸方向の 誘電率 (a) 及び自発電気分極 (b) の温 度依存性 (昇温過程)

図 4.12 に GdMnO<sub>3</sub> の外部静水圧下で の a 軸方向誘電率 (a) 及び自発電気分極 (b)の温度依存性(昇温過程)を示す。外部 圧力を印加することで転移温度が上昇し ており、自発電気分極が誘起されている ことがわかる。このように外部圧力によ り強誘電性が発現することは珍しい。ま た、0.23GPaではb軸方向に外部磁場を印 加したときと同じように(図4.7参照)、A タイプ反強磁性と強誘電性が混ざり合っ ていると考えられる振る舞いが観測され ている。b軸方向に外部磁場を印加して いる状態では、その c 軸方向の強磁性成 分を制御することが困難であったため、 CoCr<sub>2</sub>O<sub>4</sub>のような「磁場誘起自発電気分 極反転」を観測することができなかった。 しかし、外部圧力によって2つの相が混 ざり合った状態を作り出したことで、さ らに外部磁場で<br />
<br />
。<br />
軸方向の強磁性成分を 制御することは可能であるため、「磁場誘 記自発電気分極反転 </br>

待できる。磁場を印加して測定を行う場合、その磁場印加方向は測定プローブに対して一 意に決まっているので、試料を回転させ磁場を印加したい方向に固定する必要がある。圧 力印加に用いたクランプセルの中で試料を決められた方向に固定することが難しく、その ような効果はまだ観測されていない。今後は、圧力+磁場制御や外部圧力下での磁化測定 を行うことで、2つの相が混ざり合った状態の解明を目指す。

### 4.1.4 まとめ (*R*MnO<sub>3</sub> 結晶における電気磁気特性)

*R*MnO<sub>3</sub>における磁性強誘電相発現のメカニズムの解明を目指すと共に、化学圧力・外部磁場・外部圧力を制御することで磁性強誘電相の制御を行った。

#### 化学圧力制御

Rイオンを変化させることで斜方晶歪の大きさを制御し、様々な相が現れることがわ かった。斜方晶歪を大きくしていくことで電気磁気相がAタイプ反強磁性常誘電相 (A-AFM,PE)⇒ 自発電気分極をa軸方向に持つ強誘電相 (FE( $P \parallel a$ ))⇒ 自発電気分極をc軸 方向に持つスパイラル反強磁性強誘電相 (Spiral AFM,FE( $P \parallel c$ )) と変化していく。相 境界が GdMnO<sub>3</sub>(A-AFM,PE と FE( $P \parallel a$ )) と Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub>(FE( $P \parallel a$ ) と Spiral AFM,FE( $P \parallel c$ )) に位置していることがわかったので、この2つの組成に外部磁場・外部 圧力を印加して相制御を試みた。

#### 外部磁場制御

 $GdMnO_3$ に対して b 軸方向に磁場を印加したときにメモリ的挙動を観測することがで きた。これは、温度や磁場を制御することで 2 つの状態 (強誘電状態 (FE( $P \parallel a$ )) と常誘 電状態 (A-AFM,PE))を可逆的に行き来することができると共に、外場を取り除いた状態 でも磁場によって相転移した状態状態を永続的に保持することもできる。そこで、強誘電 状態と常誘電状態をそれぞれを「on」「off」とすることでメモリとして機能させることが できると考えられる。また、相反するはずの A タイプ反強磁性と強誘電相が混ざり合っ た相 (FA( $P \parallel a$ ))が現れた。この相については、磁気構造などより深く研究していく必要 がある。

 $Gd_{0.65}Tb_{0.35}MnO_3$ に対しa軸方向に磁場を印加したとき、磁場誘起自発電気分極反転が観測された。 $RMnO_3$ において、このような効果が観測されたのは初めてである。これは、 $Gd_{0.65}Tb_{0.35}MnO_3$ が2つの強誘電相 (FE( $P \parallel a$ )とSpiral AFM,FE( $P \parallel c$ ))の相境界に位置しており、2相が競合していることに起因していると考えられる。

#### 外部圧力制御

 $GdMnO_3$ に外部から静水圧を印加することでAタイプ反強磁性常誘電相から強誘電相 へと転移させることができた。外部磁場のときと同様に、Aタイプ反強磁性と強誘電相が 混ざり合った相 (FA( $P \parallel a$ ))が現れた。この相を磁場によって制御することで  $GdMnO_3$ においても自発電気分極の反転が観測されるのではないかと考えられる。

## 4.2 低次元Co酸化物結晶における電気磁気特性

ここでは、新規磁性強誘電体の探索を目的に行った「低次元 Co 酸化物結晶における電気磁気特性」の研究成果について述べる。

2.2 で示したように、スパイラル磁気構造を持つ物質では、同時に強誘電性も併せ持つ ことがわかってきている。先に述べた RMnO<sub>3</sub> でも、自発電気分極を c 軸方向に持つ相で はスパイラル磁気構造が強誘電性を誘起していることが確認されている [27,28]。そこで 今回は、スパイラル磁気構造が報告されている物質に注目し、その電気磁気特性につい て研究を行った。通常スパイラル磁気構造を発現させるには、何らかの磁気フラストレー ションが必要となる。そこで、低次元構造特有のフラストレートした磁気構造に着目し、 巨大電気磁気効果を示す新しい磁性強誘電体の探索を目的に研究を行った。



図 4.13: Ba<sub>2</sub>CuGe<sub>2</sub>O<sub>7</sub>の結晶構造 (a) とスパイラル磁気構造 (b) [34]。(b) の赤 矢印は予想される自発電気分極の方向を示す。

今回注目した Ba<sub>2</sub>CuGe<sub>2</sub>O<sub>7</sub> 結晶は、3.26K 以下でスパイラル磁気構造を持つことが報 告されている [34]。その結晶構造は、CuO<sub>4</sub> 四面体と GeO<sub>4</sub> 四面体が頂点の O<sup>2-</sup> を介し 2 次元的につながっている構造をしている (図 4.13(a) 参照)。この Cu<sup>2+</sup> のスピンが図 4.13(b) のようなスパイラル磁気構造を示す。したがって、このスパイラル磁気構造が逆 DM 相互作用を介し、強誘電性を誘起することが予想される。しかし、その転移温度が 3.26K と非常に低い。本研究では転移温度の上昇を狙い Cu<sup>2+</sup>( $S=\frac{1}{2}$ ) を Co<sup>2+</sup>( $S=\frac{3}{2}$ ) へと 置換した  $A_2$ CoSi<sub>2</sub>O<sub>7</sub>(A=Ba,Sr,Ca)<sup>11</sup>と  $A^{2+}$  に対する磁性イオン Co<sup>2+</sup> の割合を増やした ACo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(A=Ba,Sr,Ca)<sup>11</sup> の電気磁気測定を行った。

<sup>&</sup>lt;sup>11</sup>Geを用いた系での報告は少なく、結晶構造の決定など困難な点が多いので、比較的報告例の多いSiを用いた系で実験を行った。

### 4.2.1 $ACo_2Si_2O_7$

1 BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>



図 4.14: BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>の結晶構造。黒い線に囲われた領域がユニットセルに対応する。

室温でX線結晶構造解析を行った<sup>12</sup>結果、 $BaCo_2Si_2O_7$ は図 4.14 のように $CoO_4$  四面体 が角共有し、c軸方向に1次元的につながった結晶構造を持つことがわかった。C2/cとい う空間群の対称性から室温では、空間反転対称を破っておらず自発電気分極を持っていな いことがわかる。磁性を担う $Co^{2+}$ イオンが $O^{2-}$ イオンを介し1次元的につながっている こと、最近接磁性イオン ( $Co^{2+}$ )間距離 (c軸方向:1次元鎖内での距離)と第二近接イオン 間距離 (a 軸方向:1次元鎖同士の距離)にあまり差がないことなどから、この物質では磁 気フラストレーションが存在する可能性が示唆される。本研究では、FZ法により良質な 単結晶を得ることに成功した。この単結晶を用い、結晶軸に沿って切り出した後、物性測 定を行った。

ここからは、BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>の物性について詳しく示していく。

図 4.15 に BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> における磁化 (a) 及び逆帯磁率 (b) の温度依存性を示す。これよ リ、大きな磁気異方性がみられた。また、21K でスピンキャント反強磁性転移し、磁化の 立ち上がりがみられる。逆帯磁率の温度依存性のグラフの外挿からワイス温度を求める と、c軸に平行な方向の磁化から求めたときは、約-20K と転移温度 21K とほぼ同じ大き さになっているのに対し、c軸に垂直方向の磁化から見積もったワイス温度は約-74K と 転移温度 21K に対し、大きく異なっている。このことから、この物質では大きな磁気フ ラストレーション持ち、それにより反強磁性秩序が抑制されていることがわかる。



図 4.15: BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> における磁化 (a) 及び逆帯磁率 (b) の温度依存性 ((a): ◦ZFC,●FC)





$$\varepsilon = \frac{\varepsilon_0}{1 + 2\varepsilon_0 I(T)} \tag{4.1}$$

$$I(T) = \sum_{q} g(q) \langle M_q M_{-q} \rangle(T) \qquad (4.2)$$



という式で説明されている。〈 $M_q M_{-q}$ 〉は、 ある瞬間のスピン・スピン間の相関を表 す量である。これが変化することで、誘 電率が変化していると考えられる。この

式がBaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>にも適応できるか中性子回折実験から磁気構造を求めるなどして、より 詳しく解析していく必要がある。

誘電率が磁気転移温度で変化していることから磁性と誘電性に相関があることが示唆されているので、磁場による誘電率の変化 (マグネトキャパシタンス)を測定した。図 4.17 は、誘電率の磁場依存性 (a) 及び磁場下での誘電率の温度依存性 (b) を示す。その結果、5.5K,8T で 0.2% 以上のマグネトキャパシタンスが観測された。マグネトキャパシタンス



図 4.17: BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> における誘電率の磁場依存性 (a) 及び磁場下での誘電率 の温度依存性 (0T,8T)(b)。(c) は測定時の結晶軸に対する電場・磁場 の方向を示している。

が大きい物質と知られている  $BiMnO_3$  が 0.4% 程度なので、今回  $BaCo_2Si_2O_7$  において観 測されたマグネトキャパシタンスは比較的大きいと言える<sup>13</sup>。

このように、BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>が磁性と誘電性に相関を持つことはわかった。しかし、焦電 流測定を行い自発電気分極を見積もったところ、零磁場・磁場下において本研究では自発 電気分極を観測することはできなかった。このことから、BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>は強誘電体ではな い。

 $BaCo_2Si_2O_7$ が磁性と誘電性に相関を持つことから、 $CaCo_2Si_2O_7$ や $SrCo_2Si_2O_7$ についても電気磁気特性測定を行いたいと考えたが、良質な単結晶を得ることができなかった<sup>14</sup>。

<sup>&</sup>lt;sup>13</sup>DyMnO<sub>3</sub> において 500% 以上のマグネトキャパシタンスが観測されている [37] が、これは磁場誘起の 強誘電転移に起因するものである。強誘電性を磁場によって制御することができる磁性強誘電体 (磁気構造 によって強誘電性が発現している物質) では非常に大きなマグネトキャパシタンスが観測できる。磁性強誘 電体以外の物質では、0.4% 程度でもかなり大きいといえる。

<sup>14</sup>これまでに報告された例もない。

### 4.2.2 $A_2$ CoSi<sub>2</sub>O<sub>7</sub>

1 Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>



図 4.18: Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> の結晶構造。黒い線に囲われた領域がユニットセルに対応する。

室温でX線結晶構造解析を行った<sup>15</sup>結果、Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>は、図4.18のようにCoO<sub>4</sub>四面体とSiO<sub>4</sub>四面体が角共有し、2次元的に配列した結晶構造を持つことがわかった。この結晶構造は、スパイラル反強磁性を示すBa<sub>2</sub>CuGe<sub>2</sub>O<sub>7</sub>と類似している。*C*2/*c*という空間群の対称性から室温では、空間反転対称を破っておらず自発電気分極を持っていないことがわかる。本研究では、FZ法により良質な単結晶を得ることに成功した。この単結晶を用い、結晶軸に沿って切り出した後、物性測定を行った。



図 4.19: Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘電率 (青)・磁 化 (赤)(a) 及び比熱 (*C*/*T*)(b) の温度依 存性

図 4.19 は、Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘 電率・磁化(a)及び比熱(b)の温度依存 性を示す。まず、磁化の振る舞いにつ いてみていくと、15K以上の温度領域 では、常磁性的振る舞いを示している。 15K 付近から磁化の減少がみられ、同 時に比熱にも異常が観測されている。 5K以下で、磁化は温度に対し一定の値 を示すようになる。5K付近で比熱に発 散的なピークが観測されていることか ら、ここでは何らかの磁気秩序が形成 されていると考えられる。このような 磁化の変化と呼応するように誘電率の 変化が観測されている。このことから、 磁性と誘電性に相関があると考えられ る。これは、マグネトキャパシタンス が観測された (図 4.20 参照) ことからも わかる。このように磁性と誘電性が相 関を持っていることから、Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> は新規の磁性強誘電体として期待され るが、焦電流測定を行った結果、自発 電気分極は観測されなかったため、強 誘電体ではない。



図 4.20: Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘電率の磁場依存性 (a)。(b) は測定時の結晶軸 に対する電場・磁場の方向を示している。

 $Ba_2CoSi_2O_7$ では、強誘電性が観測されなかったので磁性強誘電相の発現を目指し、 $Ba^{2+}$ を $Ca^{2+}$ で置換した「 $Ca_2CoSi_2O_7$ 」を作製し、その電気磁気特性を調べた。次に、その結果について示していく。

2 Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>



図 4.21: Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>の結晶構造。黒い線で囲われた領域がユニットセルに対 応する。

室温でX線結晶構造解析を行った<sup>16</sup>結果、 $Ca_2CoSi_2O_7$ は、図 4.21 のように $CoO_4$ 四面体と $SiO_4$ 四面体が角共有し、2次元的に配列した結晶構造を持つ。この結晶構造は、スパイラル反強磁性を示す $Ba_2CuGe_2O_7$ や先ほど示した $Ba_2CoSi_2O_7$ とよく似た構造となっている。、 $P\overline{4}2_1m$ という空間群の対称性から室温では、空間反転対称を破っておらず自発電気分極を持っていないことがわかる。本研究では、FZ法により良質な単結晶を得ることに成功した。この単結晶を用い、結晶軸に沿って切り出した後、物性測定を行った。



図 4.22: Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘電率の温度依 存性。○は降温過程、●は昇温過程を示 している。

図 4.22 に Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘電 率の温度依存性を示す。250K(降温過 程),270K(昇温過程)に大きな温度ヒステ リシスを伴った誘電率の変化がみられる。 この温度では、結晶格子のモジュレーショ ンの Incommensurate-Commensurate 転 移が報告されている [39] ことから、その 影響がみられていると考えられる。この 転移温度以下で温度を下げていくと、誘 電率は緩やかに減少していく。しかし、 50K 付近で変曲点を持ち、緩やかに増加 している。零磁場下で焦電流測定を行っ た結果、自発電気分極は持っていないこ とがわかった。

<sup>16 [38]</sup> を参考にした。



図 4.23: Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘電率の温度依 存性



図 4.24: Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> における誘電率 (a) 及び自 発電気分極の磁場依存性 (b)

図 4.23 は誘電率の温度依存性を示す。 磁場を印加すると 5.75K 付近から誘電率 にピークが現れる。印加磁場を大きくし ていくとこのピークは大きくなり、低温 にシフトしていく。図4.24は $Ca_2CoSi_2O_7$ における誘電率(a)及び自発電気分極(b) の磁場依存性を示す。5.7K以下の温度で 磁場変化に対し、温度変化のときと同様 に誘電率に発散的なピークが観測されて いる。このときのマグネトキャパシタンス の大きさは最大 12% 以上 (5.2K,6.5T) と 非常に大きくなっている。自発電気分極 は磁場を印加していくことで大きくなっ ていくが、誘電率にピークを持つ磁場以 上では減少していく振る舞いが観測され た。その大きさは $35\mu C/m^2$ 程度とそれほ ど大きくはない17。これまで発見されて いる磁性強誘電体とは違い、Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> の磁場中での自発電気分極はポーリング 電場を反転しても反転しなかった。「ポー リング電場を反転したときに、自発電気 分極も反転する」というのが強誘電性の 定義であるため、Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>は「磁性強 誘電体」ではなく「磁性焦電体<sup>18</sup>」と呼ぶ ことができる。このような「磁場による 焦電性の発現」は、これまで報告されて おらず、新しい現象であるといえる。し かし、この現象は現在のところ不明な点 が多い。いくつか例を挙げると、①「自 発電気分極が電場の影響を受けない(ポー リング電場の方向や大きさによらず(ポー リング電場がなくても)、一定の方向に一 定の大きさ分極する)」②「何によって自 発電気分極の方向が決定されるのか?」③ 「どのようなメカニズムで発現しているの か?」などがある。今後、ストレインゲー ジを用いた磁歪測定などを行うことによ る詳しい現象の解析が必要といえる。

<sup>&</sup>lt;sup>17</sup>以下に、代表的な磁性強誘電体の自発電気分極の大きさを示す。TbMnO<sub>3</sub>  $\simeq 800\mu$ C/m<sup>2</sup> [1], CoCr<sub>2</sub>O<sub>4</sub>  $\simeq 2\mu$ C/m<sup>2</sup> [9], MnWO<sub>4</sub>  $\simeq 50\mu$ C/m<sup>2</sup> [20], Ba<sub>0.5</sub>Sr<sub>1.5</sub>Zn<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub>  $\simeq 150\mu$ C/m<sup>2</sup> [10]

<sup>&</sup>lt;sup>18</sup> 焦電気性を示すもの (自発電気分極を持つもの) を焦電体と呼び、その中でもポーリング電場の反転に よって自発電気分極の方向が反転するものを強誘電体と呼ぶ。

### 4.2.3 まとめ(低次元 Co酸化物結晶における電気磁気特性)

低次元構造特有のフラストレートした磁気構造に注目し、巨大電気磁気効果を示す新し い磁性強誘電体の探索を目的に研究を行った。

実際には以下の3つの新しい低次元 Co酸化物結晶について良質な単結晶を作製し、誘 電率・自発電気分極・磁化・比熱の測定を行った。

 $BaCo_2Si_2O_7$ 

結晶構造は、CoO<sub>4</sub>四面体が角共有し1次元的につながっている。

21K 付近で反強磁性転移し、21K 以下ではキャント反強磁性を示す。この磁化の立ち 上がりに伴い、誘電率の減少が観測されている。また、磁場を印加することで誘電率に変 化 (マグネトキャパシタンス: 5.5K,8T のとき 0.2%)が観測された。これらのことから、 磁性と誘電性に相関があることが示唆される。しかし、焦電流測定の結果から自発電気分 極は観測されず、磁性強誘電相は発現しなかった。

 $Ba_2CoSi_2O_7$ 

結晶構造は、 $CoO_4$ 四面体と $SiO_4$ 四面体が角共有し2次元的につながっている。

15K 付近から磁化の減少がみられ、5K 付近で磁気転移が観測された。これに伴い誘電率にも変化がみられた。また、磁場を印加することで誘電率に変化 (マグネトキャパシタンス:5.5K,8T のとき 0.2%)が観測された。これらのことから、磁性と誘電性に相関があることが示唆される。しかし、焦電流測定の結果から自発電気分極は観測されず、磁性強誘電相は発現しなかった。

 $Ca_2CoSi_2O_7$ 

結晶構造は、 $CoO_4$ 四面体と $SiO_4$ 四面体が角共有し2次元的につながっている。

磁場を印加することで誘電率に発散的なピークが観測された。これにより、非常に大き なマグネトキャパシタンス (5.2K,6.5Tのとき 10%)が観測された。また、焦電流測定から 自発電気分極を見積もったところ、誘電率の変化に対応した自発電気分極の振る舞いが観 測された。この自発電気分極は、これまでの磁性強誘電体と異なっており、ポーリング電 場を反転しても反転しない。これから、Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>は「磁性焦電体」という新しい物性 を示しているのではないかと考えられるが、まだ不明な点も多く、今後「ストレインゲー ジによる磁歪測定」「中性子回折実験による磁気構造の決定」などを行うことで、詳しい 現象の解析をしていく必要がある。

## 第5章 本論文のまとめ

### 5.1 まとめ

### 5.1.1 *R*MnO<sub>3</sub>結晶における電気磁気特性

*R*MnO<sub>3</sub>における磁性強誘電相発現のメカニズムの解明を目指すと共に、化学圧力・外部磁場・外部圧力を制御することで磁性強誘電相の制御を行った。

化学圧力 (Rイオンのイオン半径)を変化させることで斜方晶歪の大きさを制御した。 これにより、斜方晶歪を大きくしていくことで電気磁気相が A タイプ反強磁性常誘電相 (A-AFM,PE)⇒ 自発電気分極を a 軸方向に持つ強誘電相 (FE( $P \parallel a$ ))⇒ 自発電気分極を c 軸方向に持つスパイラル反強磁性強誘電相 (Spiral AFM,FE( $P \parallel c$ )) と変化していく。 相境界が GdMnO<sub>3</sub>(A-AFM,PE と FE( $P \parallel a$ )) と Gd<sub>0.65</sub>Tb<sub>0.35</sub>MnO<sub>3</sub>(FE( $P \parallel a$ ) と Spiral AFM,FE( $P \parallel c$ )) に位置していることがわかった。

 $Gd_{0.65}Tb_{0.35}MnO_3$ では、 $FE(P \parallel a) \ge FE(P \parallel c)$ が混合したと考えられる振る舞いが 観測された。

 $GdMnO_3$ に対して b 軸方向に磁場を印加したときにメモリ的挙動を観測することができた。また、相反するはずの A タイプ反強磁性と強誘電相が混ざり合った相 (FA( $P \parallel a$ ))が現れた。

 $Gd_{0.65}Tb_{0.35}MnO_3$ に対しa軸方向に磁場を印加したとき、磁場誘起自発電気分極反転が観測された。

 $GdMnO_3$ に外部から静水圧を印加することでAタイプ反強磁性常誘電相から強誘電相 へと転移させることができた。外部磁場のときと同様に、Aタイプ反強磁性と強誘電相が 混ざり合った相 $(FA(P \parallel a))$ が現れた。

### 5.1.2 低次元 Co酸化物結晶における電気磁気特性

低次元構造特有のフラストレートした磁気構造に注目し、巨大電気磁気効果を示す新し い磁性強誘電体の探索を目的に研究を行った。

実際には BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>、Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>、Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>の3つの低次元 Co酸化物結晶につ いて良質な単結晶を作製し、誘電率・自発電気分極・磁化・比熱の測定を行った。 BaCo<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>、Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>では、強誘電転移は観測されなかったが磁性と誘電性の相関 がみられた。

Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>では、磁場を印加することで焦電体のような振る舞いが観測された。「磁 場誘起焦電体」という新しい物性がを示しているのではないかと考えられる。

## 5.2 今後の課題

 $RMnO_3$ では、相境界付近で2相混合状態のような振る舞いが観測されている。1つは、 $Gd_{0.65}Tb_{0.35}MnO_3$ の零磁場での $FE(P \parallel a) \ge FE(P \parallel c)$ の混合である。もう一つは、 $GdMnO_3$ のb軸方向の外部磁場下もしくは外部圧力下でみられる *A*-AFM,PE  $\ge FE(P \parallel a)$ の混合である。どちらも、局所的にどのような状態になっているかわからないが、Gdが入っているために中性子回折実験が困難である。今後、ドメイン構造の観察など実験を重ねることで2相混合状態の解明していく。

今回の研究で新しく発見した「磁場誘起焦電体: Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub>」についてより詳しく研 究を行い、その物性とメカニズムの解明を目指す。

# 参考文献

- T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
- [2] P. Curie, J. Physique **3**, 393 (1984).
- [3] D. N. Astrov, Sov. Phys. -JETP **10**, 628 (1960).
- [4] D. N. Astrov, Sov. Phys. -JETP 11, 708 (1960).
- [5] B. I. Alshin and D. N. Astrov, Sov. Phys. -JETP 17, 809 (1963).
- [6] George T. Rado, Phys. Rev. Lett. **23**, 644 (1969).
- [7] L. M. Holmes and L. G. Van Uitert, Phys. Rev. **B** 5, 147 (1972).
- [8] R. M. Hornreich, Hans J. Scheel, and B. Sharon, Phys. Rev. B 16, 1112 (1977).
- [9] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett. 96, 207204 (2006).
- [10] T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).
- [11] J. B. Goodenough and A. L. Loeb, Phys. Rev. 98, 391 (1955).
- [12] J. B. Goodenough, Phys. Rev. **100**, 564 (1955).
- [13] J. Kanamori, J. Phys. Chem. Solids **10**, 87 (1959).
- [14] P. W. Anderson, Phys. Rev. **115**, 2 (1959).
- [15] I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
- [16] T. Moriya, Phys. Rev. **120**, 91(1960).
- [17] **有馬孝尚**, パリティ **21** No.01, 30 (2006).
- [18] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
- [19] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature 429, 392 (2004).

- [20] K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, and T. Arima, Phys. Rev. Lett. 97, 097203 (2006).
- [21] D. Vaknin, J. L. Zarestky, J.-P. Rivera, and H. Schmid, Phys. Rev. Lett. 92, 207201 (2004).
- [22] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, and A. P. Ramirez, Phys. Rev. Lett. 95, 087205 (2005).
- [23] T. Kimura, J. C. Lashley, and A. P. Ramirez. Phys. Rev. B 73, 220401(R) (2006).
- [24] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67, 180401(R) (2003).
- [25] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B 68, 060403(R) (2003).
- [26] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 224425 (2005).
- [27] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S-W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett. 95, 087206 (2005).
- [28] T. Arima, A. Tokunaga, T. Goto, H. Kimura, Y. Noda, and Y. Tokura, Phys. Rev. Lett. 96, 097202 (2006).
- [29] T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, and Y. Tokura, Phys. Rev. B 72, 100102(R) (2005).
- [30] F. Izumi and T. Ikeda, Mater. Sci. Forum, 321-324 198 (2000).
- [31] 高良和武, 菊田惺志, X 線回折技術, 東京大学出版会.
- [32] 後藤恒昭, 固体物理 **21**, No.12, 936 (1999).
- [33] J. Hemberger, S. Lobina, H.-A. Krug von Nidda, N. Tristan, V. Yu. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Phys. Rev. B 70, 024414 (2004).
- [34] A. Zheludev, G. Shirane, Y. Sasago, N. Kiode, and K. Uchinokura, Phys. Rev. B 54, 15163 (1996).
- [35] R. D. Adams, R. Layland, C. Payen, and T. Datta, Inorg. Chem. 35, 3492 (1996).
- [36] G. Lawes, A. P. Ramirez, C. M. Varma, and M. A. Subramanian, Phys. Rev. Lett. 91, 257208 (2003).

- [37] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
- [38] K. Hagiya, M. Ohmasa, and K. Iishi, Acta Cryst. B 49, 172 (1993).
- [39] K. Hagiya, K. Kusaka, M. Ohmasa, and K. Iishi, Acta Cryst. **B** 57, 271 (2001).

## 謝辞

本研究を遂行するにあたって、いろいろな方々に大変お世話になりました。

指導教官である桑原英樹教授には学部・大学院の3年間辛抱強くご指導くださり、心から感謝しております。物理学に関することだけでなく、研究者としてどうあるべきかといったことなど数多くのことを教えていただきありがとうございました。また、すばらしい研究環境を与えていただき充実した研究ができたことを深く感謝いたします。

赤星大介助教には、未熟な私の言葉にも耳を傾けていただき、大変貴重なアドバイスを していただいたことは大変感謝しております。

研究室の先輩である廣部康宏さん、野田耕平さん、久保圭展さん、中村繁さん、中原正 道さん、山内豊さんには、大変お世話になりました。野田さんには、磁性強誘電体のこと を1から教えていただくと共に、実験に関して的確なアドバイスしていただきました。中 村さんには、実験装置の使い方を細かいことまで丁寧に教えていただきました。

同輩の佐藤智則君、畠山良太君、橋浦朔君、大久保哲君とは、実験を通じ苦労や喜びを 分かち合えることができました。佐藤君とは3年間、畠山君とは修士課程からの2年間を 一緒に研究室で過ごしました。二人のおかげで学会発表や修士論文作成など数々の苦難を 乗り越えることができました。ありがとうございました。

研究室の後輩である中村文暁君、岩堀晋也君、星野美緒さん、菊地寿幸君、福島瞬君、 白石瑠里さん、菅家慎也君にも大変お世話になりました。

後藤貴行教授、高柳和雄教授には本論文をご審査いただき誠にありがとうございました。

佐藤さんをはじめとするクルップホールの皆さんには、装置作製に関してお世話になり ました。ありがとうございました。

最後にこの3年間、学部・大学院での研究生活を支えてくださった家族や友人に心から 感謝します。