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ABSTRACT

We extend the formalism for the calculation of the relativistic corrections to the Sunyaev—
Zel’dovich effect for clusters of galaxies and include the multiple scattering effects in the
isotropic approximation. We present the results of the calculations by the Fokker—Planck
expansion method as well as by the direct numerical integration of the collision term of the
Boltzmann equation. The multiple scattering contribution is found to be very small compared
with the single scattering contribution. For high-temperature galaxy clusters of kg7 =
15keV, the ratio of both the contributions is —0.2 per cent in the Wien region. In the
Rayleigh—Jeans region the ratio is —0.03 per cent. Therefore the multiple scattering
contribution is safely neglected for the observed galaxy clusters.
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1 INTRODUCTION

Compton scattering of the cosmic microwave background (CMB) radiation by hot intracluster gas — the Sunyaev—Zel’dovich effect
(Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich 1972, 1980a,b, 1981) — provides a useful method to measure the Hubble constant H
(Gunn 1978; Silk & White 1978; Birkinshaw 1979; Cavaliere, Danese & De Zotti 1979; Birkinshaw, Hughes & Arnaud 1991; Birkinshaw &
Hughes 1994; Herbig et al. 1995; Jones 1995; Myers et al. 1995; Markevitch et al. 1996; Holzapfel et al. 1997; Furuzawa et al. 1998; Hughes
& Birkinshaw 1998; Komatsu et al. 1999; Reese et al. 2000). The original Sunyaev—Zel’dovich formula has been derived from a kinetic
equation for the photon distribution function taking into account the Compton scattering by electrons: the Kompaneets equation (Kompaneets
1957; Weymann 1965). The original Kompaneets equation has been derived with a non-relativistic approximation for the electron. However,
recent X-ray observations have revealed the existence of many high-temperature galaxy clusters (David et al. 1993; Arnaud et al. 1994;
Markevitch et al. 1994; Mushotzky & Scharf 1997; Markevitch 1998). In particular, Tucker et al. (1998) reported the discovery of a galaxy
cluster with the electron temperature kg7e = 17.4 = 2.5keV. Rephaeli and his collaborator (Rephaeli 1995; Rephaeli & Yankovitch 1997)
have emphasized the need to take into account the relativistic corrections to the Sunyaev—Zel’dovich effect for clusters of galaxies.

In recent years remarkable progress has been achieved in the theoretical studies of the relativistic corrections to the Sunyaev—Zel’dovich
effect for clusters of galaxies. Stebbins (1997) generalized the Kompaneets equation. Itoh, Kohyama & Nozawa (1998) have adopted a
relativistically covariant formalism to describe the Compton scattering process (Buchler & Yueh 1976; Berestetskii, Lifshitz & Pitaevskii
1982), thereby obtaining higher order relativistic corrections to the thermal Sunyaev—Zel’dovich effect in the form of the Fokker—Planck
expansion. In their derivation, the scheme to conserve the photon number at every stage of the expansion, which has been proposed by
Challinor & Lasenby (1998), played an essential role. The results of Challinor & Lasenby (1998) are in agreement with those of Itoh,
Kohyama & Nozawa (1998). The latter results include higher order expansions. Itoh et al. (1998) have also calculated the collision integral of
the Boltzmann equation numerically and have compared the results with those obtained by the Fokker—Planck expansion method. They have
confirmed that the Fokker—Planck expansion method gives an excellent result for kg 7. = 15keV, where 7. is the electron temperature. For
ksTe = 15keV, however, the Fokker—Planck expansion results show non-negligible deviations from the results obtained by the numerical
integration of the collision term of the Boltzmann equation.
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In our previous papers devoted to the study of the relativistic corrections to the Sunyaev—Zel’dovich effect for clusters of galaxies (Itoh
et al. 1998; Nozawa, Itoh & Kohyama 1998; Itoh, Nozawa & Kohyama 2000; Nozawa et al. 2000), we had so far restricted ourselves to the
case of single Compton scattering. This is justified because the optical depth for the Compton scattering of the CMB photon inside the galaxy
clusters is generally about 102 or smaller (Birkinshaw 1999). Nevertheless, it would be desirable to evaluate the effects of the multiple
Compton scattering of the CMB photon inside the galaxy clusters accurately, as we have already developed the method to calculate the
relativistic corrections to the Sunyaev—Zel’dovich effect for the galaxy clusters with high accuracy. The multiple scattering effects have been
already considered by many authors (Wright 1979; Fabbri 1981; Loeb, McKee & Lahav 1991; Sazonov & Sunyaev 1998; Molnar &
Birkinshaw 1999; see Birkinshaw 1999 for other references). Molnar & Birkinshaw (1999), in particular, have carried out a detailed Monte
Carlo calculation including multiple scattering effects. However, most of the calculations to date other than the Monte Carlo type have
assumed isotropy of the radiation field after the first Compton scattering. In this paper we wish to evaluate the multiple scattering effects in
the same theoretical framework of our previous papers. As a matter of fact, the method of calculating the multiple scattering contributions to
the Sunyaev—Zel’dovich effect adopted by Fabbri (1981) and also by Sazonov & Sunyaev (1998) is in the same line as the present paper. The
lowest order term has been already obtained by them. We will calculate the relativistic corrections (higher order terms) in the present paper.
We will also carry out direct numerical integration of the collision term of the Boltzmann equation and compare the results with those
obtained by the Fokker-Plank expansion method. The present paper is complementary to the work of Molnar & Birkinshaw (1999) who
presented Monte Carlo results without the isotropic approximation. In the central region of a spherical galaxy cluster, the assumption of the
isotropy of the incident radiation field is valid. Therefore, rigorously speaking, the present result is valid for such conditions of restricted
geometry. Nevertheless, the analytical as well as numerical results with the isotropic approximation in the present paper will be useful when
one compares it with the full numerical calculation which does not assume the isotropy of the incident radiation field.

The present paper is organized as follows. In Section 2 we give the method of the calculation and the results. In Section 3 we present
discussion of the results and concluding remarks.

2 MULTIPLE SCATTERING CONTRIBUTION IN THE ISOTROPIC APPROXIMATION

In the present paper, we would like to derive the analytic as well as numerical expressions for the multiple scattering contribution to
the Sunyaev—Zel’dovich effect for the central region of a spherical galaxy cluster in the isotropic approximation. As a reference system,
we choose the system that is fixed to the centre of mass of the galaxy cluster. The galaxy cluster is assumed to be fixed to the CMB.
Following Itoh et al. (1998), we start with the Fokker—lanck expansion for the time evolution equation of the CMB photon distribution
function n(w):
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In equation (4), W is the transition probability of the Compton scattering, f(E) is the relativistic Maxwellian distribution function for
electrons with temperature 7,. We have integrated equation (4) analytically with power series expansions of the integrand. The expansion
parameter is

kgT,
0= —". )

me
The explicit forms for /; are given by Itoh et al. (1998).

We first assume the initial photon distribution of the CMB radiation to be Planckian with temperature T:

1
n(X) = np(X) = ——. ©)
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Assuming T¢/T. < 1, one obtains the following expression for the fractional distortion of the photon spectrum derived by Itoh et al.
(1998):

An(X)  y0.X eX

0= Fo1 Yo+ 0.Y) + @Ys+ 8Y3 + 6V, + 6Ys + 6°Yy), (8)
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£
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where o is the Thomson scattering cross-section, N, is the electron number density, and the integral is over the photon path-length in the
cluster. The explicit forms for Y, Y1, Y», Y3 and Y, are given by Itoh et al. (1998). In the present paper we have also included higher order
terms of 6°Ys and 6°Ys. The explicit forms are given as follows:

45 7515, 28917, 795429 oy 2319993 ., 12667283 5 806524 ¢ 21310, 46679 5 10853 .

Ys = —_
> 8 32 2 3 14 112 21 3 63 252
580 29 o1 wa 28917 795429 _ 25519923 _, 164674679 _, 7661978 _, s
—oxO L = x4 - + - + 3 +
45X 1890X S 4 4 X 28 112 X7+ 426200X
11529713 _ 2724103 _, 29377 _¢ . 14761 _, -4 2319993 215343811 _ 12097860 , .
- + - + + - + - +
126 X 252 X 45 X 945 X S 14 224 X X7+ 1363840%
11296318 _, . 18439247 _ 494392 _. 400171 _, -6 3427727 1321220 25019944 _, 9756847 _,
- + - + + - + — +
21 X 168 X 45 X 945 X 5 21 3 X 63 X X
2407609 _, 3149197 _ wof 1447049 7499423 _ 513242 _, 4973819 _, <10/ 20039 158369
- + )+ - + X - X2+ )+ -= X 10
90 1890 ) S 63 252 45 3780 S 45 945 > (10
7425 128655 . 360675 ., 50853555 .. 45719721 ., 458203107 .. 22251961 .. 71548297
Ye = + X- X+ X3 - X4+ X - X6+ X’
®~ 256 1024 32 128 32 256 21 210
_ 26865067 g 7313155 o5 44925(10 N 63615(“ B @f{” L3 P 360675 N 50853555)?
420 1008 9 315 675 9450 64 64
502916931 _, = 5956640391 _, 422787259 _, = 143096594 _5 6635671549 _ 1835601905 _, 2275198 _,
— X2+ X3 - X4+ X - - X
64 256 14 7 840 1008
6475498 _, 201428 _,, = 50431 _,, s 45719721 7789452819 _ 333779415 _, 2289545504 _,
+ b X+ X"+ 34 - + X - X+ X
315 225 3150 32 512 7 35
3 32506731075(4 N 12425050345 %5 _ 38289808 %6 4 1755508785(7 344840 1343507 _,
70 672 9 315 9 1260
Lo 378283337 22179972075( 3599918978 Fe 6574526345 P 93232583 P 690760073 %5 314331285(6
84 105 105 252 9 315 135
N 91514325(7 L 832817077 N 5053390105 _ 397497085(2 N 1090981471 % 138184645(4 . 12565681 5
945 420 1008 9 630 45 630
L0f 1551986 . 69474842)? 19157638 _, N 632826175(3 (o 1616456 N 34394053 . , an
9 315 225 6300 675 37800
where
)?EXcoth(%(), (12)
. X
5= X __. (3

sinh (K)
2

Equation (8) is the single scattering contribution, i.e. the first-order term in y. If the cluster of galaxies is optically thin, i.e. y < 1, the single
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scattering approximation is a good approximation. In fact, the approximation is valid for most of the clusters. However, it is extremely
important to calculate the next order contribution in order to obtain more accurate theoretical prediction for the future observation of the
Sunyaev—Zel’dovich effect for clusters of galaxies.

We now calculate the multiple scattering contribution. Since y << 1 is realized for most of the clusters of galaxies, the second-order
contribution is considered to be sufficient. We now assume that the initial photon distribution has an isotropic first-order perturbation
namely,

(14)

nX) =n(X)=np(X) + An(X) = ny(X) |:1 + An(X)} ,

no(X)

where the second term in equation (14) is given by equation (8). Here we have followed Fabbri (1981) and Sazonov & Sunyaev (1998) in
assuming that the radiation field after the first Compton scattering is isotropic. To go beyond the isotropic approximation would be a very
involved calculation depending on the exact geometry of the galaxy cluster. In such a calculation simple analytic expressions resulting from
the Fokker—Planck expansions would not be possible. In this paper, therefore, we content ourselves with the isotropic approximation
and carry out higher order Fokker—Planck expansions. Inserting equation (14) into the right-hand side of equation (1), and performing
the standard calculation, we obtain the following expression for the fractional distortion of the photon distribution function including the
second-order contribution:
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where X and § are defined by equations (12) and (13), respectively. In equation (15), the first term corresponds to the first-order contribution
and the second term corresponds to the second-order contribution of the multiple scattering. In deriving equation (15), we have used the
following identity relation for y:
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We have also neglected terms higher than O(HS) in the y 2 contributions in equation (15). It is important to note that equation (15) satisfies the
photon number conservation.

We note that the lowest order term Z, has been already obtained by Fabbri (1981) and also by Sazonov & Sunyaev (1998). The present
calculation has produced the relativistic correction terms Z,, Z, Zs, Z4, Zs, and Z.

We will also calculate the multiple scattering effect to the thermal Sunyaev—Zel’dovich effect by numerically integrating the collision
term of the Boltzmann equation. Here we assume that the radiation field after the first Compton scattering is isotropic. The original
Boltzmann equation for the photon distribution function n(w) is given by (Itoh et al. 1998)
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By inserting equation (14) in equation (24) we obtain
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The first term corresponds to the single scattering contribution which has been calculated by Itoh et al. (1998). The second term corresponds
to the double scattering contribution. For An(«')/ng(«') we use the numerical results obtained by Itoh et al. (1998) and calculate the double
scattering contribution by numerical integration of the collision term of the Boltzmann equation.With equation (15), we define the distortion
of the spectral intensity as follows:

X AnX)
X — 1 nyX)

Al = Al + AL. (26)

The first term Al; contains a factor y, whereas the second term Al, contains a factor y >. In Fig. 1 we show Al,/y? as a function of X for the
case kgT. = S5keV. For kgT. = SkeV it is found that results of the Fokker—Planck expansion approximation perfectly agree with that
obtained by the numerical integration of the collision term of the Boltzmann equation for the entire region of X = 20. For kg7. = SkeV the
convergence of the series with respect to the relativistic temperature parameter 6, is relatively fast. Therefore it is sufficient to include up to
6§Z4 terms in equation (15). In Fig. 2 we show Al,/y? for the case kg T. = 10keV. For this temperature region the convergence of the series
expansion is slow for large values of X. The Fokker—Planck expansion approximation is valid for X = 10. For higher temperature region, the
convergence is even worse. For kgT. = 15keV the expansion approximation is valid for the region of X = 4. In order to estimate the relative
importance of the multiple scattering contribution, we now define the following ratio:

A[z/yz

r .
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In Fig. 3 we show I for X = 5 as a function of the electron temperature 7,. It is clear that I" increases with a negative sign as the temperature
of the cluster of galaxies increases. The numerical result (solid curve) shows that the maximum contribution is I' = —0.2 at kgT. = 15keV.
However, the multiple scattering contribution is small because of a further factor y. Namely, for the cluster of galaxies of kg7, = 15keV, we
have

Al
22— yI'~ —02y =~ —0.2 per cent, (28)
Al

where we used a typical value y = 0.01 of the galaxy clusters. Therefore the maximum effect of the multiple scattering contribution is —0.2
per cent of the single scattering contribution for the observed high-temperature galaxy clusters.

0.002

0.000
Al /v°
—-0.002
70004 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1
0 5 10 15 20
X

Figure 1. The spectral intensity distortion Al»/y? as a function of X for the case kg T, = 5keV. The dotted curve shows the contribution up to 9‘;24. The dashed
curve shows the contribution up to 6Zs. The dash—dotted curve shows the full contribution up to 68Zs. The solid curve shows the results of the numerical
integration.
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In the Rayleigh—Jeans limit where X —0, equation (15) is further simplified:
An(X) —ZyOE( 17 123 , 1989 N 14403 , 20157 5 423951 06)
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no(X) 10 40 ¢ 280 ° 640 ¢ 224 1024 ¢
17 226 34527 13758 1344789 25927827
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With equation (29) we have the multiple scattering contribution for kg7T. = 15keV and y = 0.01 as follows:

Al
A_I? ~ —y0, = —0.03 per cent. o

In the Rayleigh—Jeans region the multiple scattering contribution is safely neglected.

3 DISCUSSIONS AND CONCLUSIONS

We have calculated the relativistic corrections to the multiple scattering contribution to the Sunyaev—Zel’dovich effect in the isotropic
approximation by extending the formalism developed in our previous papers as well as by Fabbri (1981) and Sazonov & Sunyaev (1998). We
have also calculated the multiple scattering effect on the Sunyaev—Zel’dovich effect by numerically integrating the collision term of the

0.02vvvv‘vvvv‘vvvv‘vvvv
0.01

Alg/yz 0.00

-0.01

70_021111l1111l1111l1111
0 5 10 15 20

Figure 2. Same as Fig. 1 except for kg7, = 10keV. The dotted curve shows the contribution up to 0324. The dashed curve shows the contribution up to 9225.
The dash—dotted curve shows the full contribution up to 05326. The solid curve shows the results of the numerical integration.

0.0 Ko
I X=5 ]
0.1 —
3 g
" -0z S~ -~
03 —
gl v b ey
0 5 10 15 20
KkpT, (keV)

Figure 3. The ratio I" as a function of kg7, for a fixed value of X = 5. The dotted curve shows the contribution up to 0324. The dashed curve shows the
contribution up to 6§Z5. The dash—dotted curve shows the full contribution up to 022(,. The solid curve shows the results of the numerical integration.
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Boltzmann equation. Our approach is complementary to the Monte Carlo calculation of Molnar & Birkinshaw (1999). We have estimated the
accuracy of the Fokker—Planck expansion approximation by making a comparison with the result obtained by the numerical integration of
the collision term of the Boltzmann equation. We have found that the Fokker—Planck expansion approximation is valid for the entire region
of X = 20 for kgT. = SkeV. However, for kgT. = 10keV, valid region is limited to X = 10. For higher temperature region, the convergence
is even worse. For kgT. = 15keV the expansion approximation is valid for the region of X = 4.

From the results presented in the previous section it is clear that the multiple scattering contribution Al is very small compared with the
single scattering contribution AZ;. For high-temperature galaxy clusters of kg7 = 15keV, we obtain the ratio Al,/Al; = —0.2 per cent at
X = 5. In the Rayleigh—Jeans region we have Al,/AI} = —0.03 per cent. Therefore it is concluded that the multiple scattering contribution
to the thermal Sunyaev—Zel’dovich effect for galaxy clusters can be safely neglected. The reader is therefore referred to our previous four
papers which deal with the single scattering contribution in detail.
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NOTE ADDED IN PROOF

Very recently we have noticed that Dolgov and his collaborators (Dolgov et al. 2001) have carried out independent numerical calculations in
the isotropic approximation. Our numerical results are in excellent agreement with their calculation.
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