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Baryons in Qutskirts of Galaxy Clusters

Warm/Hot Intergalactic Medium

Temperature 10° -107 K
(shock-heated)
Density
1~10 times the mean

l
Not bright in X-ray

Cen & Ostriker (1999)




WHIM in QSO Spectra
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Total Mass Density of the WHIM
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Nicastro et al. (2005)

The observed (estimated)
number of warm absorbers
in two blazar spectra is
consistent with the predicted
one from CDM simulations.

1
Significant mass is in WHIM.



WHIM Physics: Shock-Heating

protons
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WHIM Physics: Electron-lon Equilibration

Electron temperature evolution:
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Energy exchange time scale by Coulomb collisions:
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Previous Works

Fox & Loeb (1998)
Self-similar collapse + two-temperature medium

Takizawa (1998, 1999) Chieze et al. (1998)
3D hydrodynamic simulations of cluster formation

Courty & Alimi (2004)
Cosmological set-up, two temperature structure
and the effect on radiative cooling

Cargill & Papadopoulus (1988) Laming (2000)
suggest electron heating mechanisms

(in the context of SNRevolution)
but none of them seems to work.



In this work:
Large-scale cosmological simulations

Hierarchical formation and shock—heating
Intrinsically 3D structure

Two—temperature medium

|
Large volume ~(140Mpc)? CDM simulations

Smoothed Particle Dynamics (GADGET)
with 59 million particles

Electron—ion relaxation model

We revisit whether or not non-equipartion effect
is important in diffuse IGM and in the ICM



Results at z=0
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Bulk of the WHIM has a well-developped

two-temperature structure




How does the gas around clusters get high-temperature?

z=20.0
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dark matter density

gas density
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tharmal SZ2

gas shocks

Movie by V. Springel




Complex internal structure
due to active structure formation
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Temperature Profile around a Cluster
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Warm component
exists within 5Mpc.
The total mass of
the warm gas is
comparable to the
cluster gas mass!

Gas temperature

1 distribution

/e distribution is

1 shifted to lower values



Implications |: lon Populations
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Implications Il: Line Emissivity
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From Yoshikawa et al (2004).
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Strong peak

at ~2x10° K
for Ov1i,

and a broad tail
~3x10° K for

OVI1L



Making Emission Map

Using the outputs of the simulations,
we compute the metallicity (as often assumed)

Z = 0.02(p/p)°> 25

and surface brightness in soft—Xray given by
2
pm X 5
S :/ — € T,Z
- 4r(1+ 2)4AA ( > fee(T,2)
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OviI/Ovill Emissivity Map

OVII(574,561,568,665€eV) OVIII (653eV)

Note! logarithmic scale used in these maps




Comparison with a single-fluid model
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Telec [K]

Implications for SZ and Cosmology
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Electron temperature is lower

| than the mean temperature

(systematically!) in rich clusters.

The fractional difference is
>10% for M > 10'* Msun

Cluster M-T relation:

Te X fM2/3



Cluster Abundance and Parameter Estimation

Diaferio, Nusser NY, Sunyaev (2003)
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Conclusions

1 A factor of 2 difference between
/iand 7 in the WHIM (7. smaller in dense regions)

2 OVII emission is enhanced, making
cluster outskirts marginally detectable
by planed missions.
Necessary to follow the evolution of 7elec.

3 A large reservoir of warm (<1 keV) component

in/around clusters
— implications for cluster soft-Xray excess ?

4 Systematic ~10% deviations in ICM will
affect parameter estimation by future surveys



Future Work

Effect on gas cooling (galaxy formation, ¥
cluster cooling flow) to be revisited

Similar effects in shocks generated by
galactic winds (and cosmic tsunamis @ )

Non-equilibrium evolution needs to be
taken into account for accurate predictions



Cooling time scale
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