The Temperature Structure of the InterGalactic Medium and IntraCluster medium

Naoki Yoshida Department of Physics Nagoya University

Yoshida, Furlanetto, Hernquist (2005) ApJ, 618, 91

Baryons in Outskirts of Galaxy Clusters

Temperature $10^5 \cdot 10^7$ K (shock-heated) Density $1 \sim 10$ times the mean \downarrow Not bright in X-ray

WHIM in QSO Spectra

OVI line

Total Mass Density of the WHIM

The observed (estimated) number of warm absorbers in two blazar spectra is consistent with the predicted one from CDM simulations. || Significant mass is in WHIM.

WHIM Physics: Electron-Ion Equilibration

Electron temperature evolution:

$$\frac{dT_{\rm e}}{dt} = \frac{T_{\rm i} - T_{\rm e}}{t_{\rm ei}} + (\gamma - 1) \frac{T_{\rm e} dn}{n dt}$$

Energy exchange time scale by Coulomb collisions:

$$t_{\rm ei} = \frac{3m_{\rm e}m_{\rm i}}{8(2\pi)^{1/2}n_{i}Z_{i}^{2}e^{4}\ln\Lambda} \left(\frac{k\underline{T}_{e}}{m_{e}} + \frac{kT_{i}}{m_{i}}\right)^{3/2}$$
$$\sim 2 \times 10^{8} \text{yrs} \, \frac{(T_{e}/10^{8}\text{K})^{3/2}}{(n/10^{-3}\text{cm}^{-3})}$$

- 1-

Previous Works

Fox & Loeb (1998) Self-similar collapse + two-temperature medium

Takizawa (1998, 1999) Chieze et al. (1998) 3D hydrodynamic simulations of cluster formation

Courty & Alimi (2004)

Cosmological set-up, two temperature structure and the effect on radiative cooling

Cargill & Papadopoulus (1988) Laming (2000) suggest electron heating mechanisms (in the context of SNRevolution) but none of them seems to work.

In this work: Large-scale cosmological simulations

Hierarchical formation and shock-heating Intrinsically 3D structure Two-temperature medium Large volume $\sim (140 \text{Mpc})^3$ CDM simulations Smoothed Particle Dynamics (GADGET) with 55 million particles Electron-ion relaxation model

We revisit whether or not non-equipartion effect is important in diffuse IGM and in the ICM

Results at z=0 $10^{6} < T < 10^{7} K$ Te < 0.5Ti Gas All Gas WHIM · TwoTemp.

Bulk of the WHIM has a well-developped two-temperature structure

How does the gas around clusters get high-temperature?

Temperature Profile around a Cluster

Implications I: Ion Populations

Implications II: Line Emissivity

Strong peak at $\sim 2 \times 10^6$ K for OVII, and a broad tail $\sim 3 \times 10^6$ K for OVIII.

From Yoshikawa et al (2004).

Making Emission Map

Using the outputs of the simulations, we compute the metallicity (as often assumed)

$$Z = 0.02 (\rho/\bar{\rho})^{0.3} Z_{\odot}$$

and surface brightness in soft-Xray given by

$$S_{\mathsf{J}} = \int \frac{\rho m}{4\pi (1+z)^4 \Delta A} \left(\frac{X}{m_{\mathsf{p}}}\right)^2 f_{\mathsf{e},\mathsf{i}}^2 \epsilon(T,Z)$$

OVII/OVIII Emissivity Map

OVII(574,561,568,665eV)

OVIII (653eV)

Note! logarithmic scale used in these maps

Implications for SZ and Cosmology

Electron temperature is lower than the mean temperature (systematically!) in rich clusters.

The fractional difference is >10% for M $> 10^{14}$ Msun

Cluster M-T relation: $T_{\rm e} \propto f M^{2/3}$

Cluster Abundance and Parameter Estimation

Conclusions

- 1 A factor of 2 difference between T_i and T_e in the WHIM (T_e smaller in dense regions)
- 2 OVII emission is enhanced, making cluster outskirts marginally detectable by planed missions. <u>Necessary to follow the evolution of *T*elec.</u>
- 3 A large reservoir of warm (<1 keV) component in/around clusters
 - \rightarrow implications for cluster soft-Xray excess ?
- 4 Systematic ~10% deviations in ICM will affect parameter estimation by future surveys

Future Work

- Effect on gas cooling (galaxy formation, cluster cooling flow) to be revisited
- Similar effects in shocks generated by galactic winds (and cosmic tsunamis)
- Non-equilibrium evolution needs to be taken into account for accurate predictions

Cooling time scale

