X-Ray observability of WHIM and our new mission concept DIOS (Diffuse Intergalactic Oxygen Surveyor)

Noriko Yamasaki ISAS/JAXA

"Cosmic Baryon Budget" requires missing baryon

- The observed baryons are only 10-40% of the expected valued from big-bang nucleosynthesis.
 Ω_{star}+Ω_{HI}+Ω_{H2}+Ω_{hot X-ray} = 0.0068^{+0.0041}-0.0030</sub> vs Ω_{BBN}=0.04
 (Fukugita, Hogan, & Peebles 1998)
- ✓ Is there other phase of cosmological baryons?
 Star: Condensed T<10⁵K,δ>1000
 Lyman alpha forest: Diffuse T<10⁵K,δ<1000
 X-ray:hot ICM T>10⁷K

Where are missing baryons in the Universe?

~40% of total baryons at z=0 are IGM with 10⁵K<T<10⁷K (Cen & Ostriker 1999)

-> Warm-Hot Intergalactic Medium

A close-up view of a filament

 Λ CDM simulation by Yoshikawa et al. 2002

A 30 Mpc/h box around a massive cluster at z=0

Warm gas follow dark matter very well.

How can we observe the WHIM?

- OVI ,OVII, & OVIII absorption lines in QSO spectra? New possibility: GRBs as a background sources
- 2. Bumpy soft X-ray background?

Case study: our results around Virgo cluster combination of absorption and emission lines

Absorption Lines towards QSO

- Mrk 421 (z=0.03) and 1ES 1028+511 (z=0.0361) show redshifted OVII absorption lines with LETG/Chandra high resolution spectra (Nicastro et al. 2005 astroph/0501126)
- OVI absorption lines observed by FUSE gave a lower limit of WHIM fraction in total baryonic mass as 4.8+/-0.9% at z<0.15. (Danforth & Shull 2005 astroph/0501054)

Problems of Absorption lines

GRBs as a background source candidate

Kawahara et al. 2005 in preparation

- Number of QSOs as bright as MKN421 is very small.
- GRBs are brightest X-ray objects at high z.
- Simulate a GRB spectrum with WHIM absorption: F(t,E)=6×10⁻¹¹ (t/40k)^{-1.2} (E/1keV)^{-1.13} egs/s/cm²/keV expected rate: 40/yr, detected 3/yr by Swift Obs: from 400sec after the burst.
- O.3 OVIII absorption lines with S/N>3 detection is expected per a GRB.

From the outer region of Coma cluster, soft emission with $kT\sim0.2$ keV and abundance of 0.1 is found.

This looks stronger than Galactic emission, which has large uncertainty in modeling. (Finoguenov et al. 2003)

Soltan et al. (astro-ph/0501275) suggest a correlation between galaxy distribution and soft X-ray background. Excess emission of kT<0.5keV extends up to 1.5Mpc around galaxies.

Virgo cluster case (Fujimoto et al. 2004)

- ✓ LBQS 1228+1116 (z=0.237)
 83 arcmin away from M87
 - 54 ksec exposure with XMM-Newton
- 2.3 s detection of OVIII absorption line
 - cz is consistent with that of M87, 1307 km/s
 - kT>0.20 keV

Virgo Cluster (Around M87)

O VIIIO VIIEnergy (eV)650.9 (+0.8 - 1.9)571.6 (fixed)Cz (km/s)1253 (+881 - 369)--EW (eV)2.8 (+1.3 - 2.0) $<2.8 (3\sigma)$ N_{ion} (/cm²) $6.2(+3.3 - 4.4) \times 10^{16}$ $<3.7 \times 10^{16} (3\sigma)$

Search the Emission from Warm Gas

- ✓ The backgrounds are
 - Non X-ray particles, CXB, Vigo hot ICM(kT~2keV), local hot bubble (kT~0.07 keV), Milkyway halo (kT~0.2 keV)
 - LHB and MWH temperature are studied by Lumb et al. 2002
 - Contribution from North Polar Spur ?
- After subtracting these BGs with reasonable systematic errors, we obtained a soft X-ray emission. We treated as an upper limit of WHIM emission
- ✓ If the redshift of the Oxygen lines are measured, we can determine the origin of the soft X-ray emission.

PN spectrum from 247 arcmin² area around the QSO

Combining the absorption lines and the excess emission

- \checkmark Absorption EW: $n_{ion} \times L$
 - $n_{ion} = n_e x [O/H] x f_{ion}$
 - $f_{ion}(T)$ can be obtained by OVII/OVIII ratio
 - L can be limited by line width
- \checkmark Emission Measure : $n_e n_{ion} \times V$ (V=L×S)
- Basically, baryon density and metal abundance can be solved.
 - In Virgo case, the absorption line gives N_{OVIII}~6×10¹⁶ cm⁻²,∆Z<0.02 kT>0.2 keV
 - Then upper limit of WHIM emission measure gives n_e<6×10⁻⁵cm⁻³(A/0.1)(f/0.4) and L> 9Mpc (A/0.1)⁻² (f/0.4)⁻² (A: abundance in solar ratio)

Oxygen emission lines as WHIM probe

- ✓ Why oxygen emission lines?
 - Most abundant metal
 - Good tracers at T=10⁶-10⁷K
 - Not restricted to region toward background QSO
 - With enough energy resolution, 3D map of large scale structure is obtained. Galactic component can be excluded.
 - Suitable for systematic WHIM survey

OVII :574, 561, 568, 665 eV OVIII :653 eV

Simulation for Oxygen lines from WHIM

(See Yoshikawa et al. 2003, 2004 for details)

- ✓ Cosmological SPH simulation in Ω =0.3, Λ =0.7, σ_8 =1.0,h=0.7 Λ -CDM made a "Local Universe" with DM, baryon , and potential.
- \checkmark Temperature is assumed to be equivalent with the potential.
- Various Metallicity models based on the density
- Convolve the emissivity (continuum and lines) over the lightcone from z=0 to z=0.3
- Add Galactic emission lines (McCammon et al. 2002) and CXB

Simulated Local Universe in X-Ray

Expected S/N for OVIII line

- To observe WHIM via O lines, line sensitivity of ~10⁻¹¹ ergs⁻¹cm⁻²sr⁻¹ is required.
- ✓ S/N ratio are calcutated for ∆E=2 eV detector assuming exposure by product of area, field-of-view and time.
- ✓ For reasonable observation time, SΩ=100deg²cm² is necessary

Proposed small mission --DIOS--(Diffuse Intergalactic Oxygen Surveyor)

 $\Delta E=2eV$ and $S\Omega$ =100cm²deg² with small (<400kg) satellite

- Use TES micro calorimeter array for good energy resolution
- 4-reflecting X-ray mirror to obtain wide field-of-view
- 3D mapping of Oxygen lines of 10x10 degree² sky into z=0.3
- Responsible to GRB alert
- Submitted to ISAS/JAXA but review is not yet started.

TES calorimeter array

- Astro-E2/XRS is 3.6mm square, but we need 1cm square array.
 XRS -type detector is hard to be enlarged more than 64 pixels..
- TES (Transition Edge Sensor) uses transition between superconducting and normal phase as a thermometer.
- It will be a prototype of NeXT
 Soft X-ray Spectrometer.
- ✓ 16x16 array format TESs has been fabricated and tested.
- Signal multiplexing is under developing (AC bias & multi-input SQUID)

4-stage X-ray mirror

 Standard 2-stage Walter mirror Larger area requires longer focal length and smaller fov for finite-size detector.

4-reflecting optics:

500mm diameter mirror with wide fov (50') with short focal length (70cm). Compact and suitable to small mission

- Angular resolution of 3' is not so good, but enough to observe diffuse emission
- ✓ Energy range:up to 1.5 keV
 - Cover Mg K line
- Fabrication test has been started at Nagoya Univ.

DIOS Performance

Effective area	~200 cm² @0.6keV
Field of view	50' diameter
SΩ	~100 cm ² deg ²
Angular resolution	3' (16 x 16 pix)
Energy resolution	2 eV (FWHM)
Energy range	0.1 - 1.5 keV
Mission life	> 5 yr

Observation Plan

- Survey observation:
 10x10 degree squares with
 100ks exposure -> WHIM,
 1/4 sky with 1ks ->hot ISM
- Pointing observation : selected clusters, QSOs
- ✓ Response to GRB alerts <500sec</p>
 - Uplink commands via full time access to the internet with [~]_F ORBCOMM spacelink. [~]_G

~10 GRBs/year with F(t,E)= $5x10^{-12}$ (t/40ks)^{1.2} (E/1keV)^{-1.1} (erg/cm²/sec/keV)

Summary

- ✓ Warm-hot IGM (10^{5} K<T< 10^{7} K) is the most plausible missing baryon candidate.
- X-ray will be a window to the missing baryon. Oxygen line mapping will reveals the large scale structure of baryons in the Universe
 - Contamination from the Galactic hot gas should be excluded.
 - Complementary studies of emission and absorption lines will give us the density and metallicity of WHIM
- For that purpose, fine spectroscopy by non-dispersive method and large field-of-view are essential.
 Not a large X-ray observatory but an alternative approach like
 DIOS is required.