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Justification

• For most of this talk I will directly be exploring 
applications of cosmic shear data, which is not the 
subject of this workshop.

• However, the applications I discuss can also be 
worked out for X-ray and SZ surveys of galaxy 
clusters.  These surveys’ sensitivity to dark energy 
also comes from their senstivity to distance and 
growth (Haiman, Mohr & Holder 2001). 



Outline

• Using the CMB to control the high-z matter 
content and primordial power spectrum (so that 
low-z observations can focus on things important 
at late times such as dark energy).

• Tomographic Cosmic Shear
• Reconstruction of r(z) and g(z)
• Application to

– Gravity
– Inflation
– Neutrino masses

• A New SZ-Shear Synergy?



Planck can determine the matter 
power spectrum through the 

matter-dominated era
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Light blue:  MAP (13’)

Dark blue:  Planck (5’)

•P amplitude about 10% of T anisotropy

•l > 15 from last—scattering surface

•l < 15 from reionization

Large angular scales Small angular scales 

(improvement due to ang. res.) (improvement due to sensitivity)



Breaking the P-τ Degeneracy
Cosmic variance error bars

No reionization

Reionized models

1) Reionization Uniformly 
suppresses power at l > 
about 25 by e-2τ

2) And creates new fluctuations 
at very low l

From Holder et al. (2003)

The signal is very small 
(0.1 µK2).

Need the high sensitivity 
of Planck and nearly full 
-sky coverage to study 
this signal in any detail. 
WMAP is insufficient. 



Why are there bumps in the 
polarization power spectra at 

low l?
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Cosmological Parameter Error Forecasts

Baryon density

Cold Dark Matter density

Optical Depth to Thomson Scattering by 
reionized inter-galactic medium

Power spectrum of primordial perturbations 
spectral index (ns)

Running of spectral index (dns/dlnk)

Amplitude of primordial 
perturbations

Hubble constant

Blue:  WMAP 4-year

Red:  Planck 1-year



Planck and the ‘high-z’ 
parameters

• Improve ns and dns/dlnk by extending to smaller 
scales.

• Improve primordial power spectrum amplitude 
determination by using low l polarization to break 
P-τ degeneracy:  σ(P)/P = 2σ(τ)

• Improve ωm = Ωm h2 to 1% determination by 
cosmic-variance limited measurement of 3rd peak.

Determines the density power spectrum from 
high-z until dark energy becomes dynamically 
important.



All that remains to be inferred from 
low-z large-scale structure data are two 

functions:  g(z) and r(z)*
If the dark matter is cold and pressureless, and we can ignore spatial 
density fluctuations in the dark energy itself, then 

δ(x,z1) = g(z2)/g(z1) δ(x,z2);

i.e., growth is scale-independent.

How the density field influences two-dimensional images of the sky we 
observe today depends on the angular-diameter distance, r(z) .

*To zeroth order… there are important exceptions to this rule (e.g. due to
neutrinos).



All that remains to be inferred from 
low-z large-scale structure data are two 

functions:  g(z) and r(z)
It is through these two functions that large-scale structure probes 

[galaxy redshift surveys, galaxy cluster surveys (SZ, optical, lensing, X-
ray), shear two-point function, etc.]

are sensitive to the dark energy. 

We will study how well the cosmic shear two-point function can be used 
to simultaneously reconstruct g(z) and r(z).



Outline

• Using the CMB to control the high-z matter 
content and primordial power spectrum

• Tomographic Cosmic Shear
• Reconstruction of r(z) and g(z)
• Application to

– Gravity
– Inflation
– Neutrino masses

• A New SZ-Shear Synergy?



Baseline model of shear data: G2π, An 
Approximation to the LSST Cosmic 

Shear Survey 
• Source redshift distribution:

– dn/dz ∝ z1.3exp[-(z/1.2)1.2] for z < 1
– dn/dz ∝ z1.1exp[-(z/1.2)1.2] for z > 1 (with 50% missing 

in 1.2 < z < 2.5 range) 
– ntot=65/arcmin2

• Eight photo-z bins: [0-0.4], …, [2.8-3.2]
• Sky coverage:  2π steradians
• Angular scales:  40 < l < 1000
• No systematics (calibration errors, photo-z errors, 

…)

Nagashima et al. 2002



Cosmic Shear Two-Point Functions
• We forecast using data with l < 

1000.
• The signal is harder to calculate 

at l > 1000 and more sensitive to 
spurious psf power.

• There is a lot of information at l 
> 1000.  

• I only use the 2-point function in 
this talk.  No higher-order 
correlations (Takada & Jain 2003).  
No counting of mass clusters 
(Tyson et al. 2002, Wang et al. 2004, 
Hennawi and Spergel 2005). No ‘cross-
correlation cosmography’ (Jain & 
Taylor 03, Bernstein & Jain 03, Song & 
Knox 04, Hu & Jain 04).  

l(l
+1

)C
ldd

/2
π

Song & Knox 2004
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1100-1100



Some of the 9(9+1)/2=45 two-point 
functions

auto power spectra  (z-z)

0.2-0.2

3.0-3.0

1100-1100

l(l
+1

)C
ldd

/2
π

cross power spectra  (z-1100)

0.2-1100

3.0-1100

Redundancy provides robustness (e.g., 
Takada & White 2003)

‘CMBpol’ errors shown 
here… but we use Planck

Shape noise power 
for 10 gal/arcmin2
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• Tomographic Cosmic Shear
• Reconstruction of r(z) and g(z)
• Application to

– Gravity
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Dependence of Shear power on r(z) and g(z)
Note:  
switched 
from 
deflection 
angle power 
spectrum to 
shear power 
spectrum 
(which 
simply 
means 
multiplying 
by l(l+1)).



Dependence of Shear power on r(z) and g(z)



Dependence of Shear power on r(z) and g(z)



Dependence of Shear power on r(z) and g(z)

Increasing g(z=0.5) by 30%



Dependence of Shear power on r(z) and g(z)

Increasing g(z=0.5) by 30% Increasing r(z)



Parameterization
• Nine high-z parameters (primordial power 

spectrum parameters, matter density, baryon 
density, …)

• Eight distance parameters:  
– Distance to z=0.4i for i = 1 to 8.  
– R(z) constructed from these parameters by 

interpolation.
• Nine growth parameters:  

– F(z) = g2(z)/a2(z) specified at z=0.4i for i = 0 to 8. 
– F(z) constructed from these parameters by 

interpolation.
From this parameterization and our modeling of the data we 
calculate the expected parameter error covariance matrix (assuming 
a linear response of power spectra to parameters; i.e. Fisher matrix 
approximation).



Reconstruction from LSST and Planck
Knox, Song & Tyson 2005

•Remarkable precision, 
especially for distance (2% 
errors!)

•Errors are correlated across 
redshift some linear 
combinations are much better 
constrained than indicated by 
the error bars.

•Constraints on w = P/ρ are 
almost entirely from r(z). [And 
is σ(w0) = 0.075 (Song & Knox 
2004)]

•Independent r(z) and g(z) 
reconstructions can be used for 
consistency test.

Scatter in points is due to one sampling of the errors 
from their calculated probability distribution.  
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A Consistency Test
• With r(z) recovered, can 

adjust ρx(z) to get right H(z) 
to match observed 
r(z)=∫dz/H(z).

• With H(z) in hand, ignoring 
dark energy fluctuations, 
assuming cold dark matter and 
Einstein gravity, one can 
predict g(z).

• As an example, we took 
fiducial model here to be a 
DGP model with no dark 
energy.  The resulting g(z) 
prediction for Einstein gravity 
+ dark energy is the dashed 
curve.  They are highly 
distinguishable.

Knox, Song & Tyson 2005

Fiducial DGP model g(z)

Einstein gravity prediction of g(z)

Curves are more than 10σ different
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Zero Mean Curvature:  The Most 
Robust Prediction of Inflation.  

It’s worth testing to higher precision!

Measuring distances to redshifts in 
the matter-dominated era will help.



Physical size of typical hot/cold spot can be calculated.  How this 
projects into angular size depends on geometry. 



• Ωtotal=1

Bennett et al Feb 11 ‘03

WMAP

Tegmark et al 

astro-ph/0310723

WMAP 
Only

WMAP 
+ SDSS 



Precision Determination of Mean 
Curvature

Matter-dominatedDark-energy polluted

O Μ ∗

C
M

B
 last-scattering surface

Measure DO* (with CMB) and DOΜ (e.g., lensing)

Calculate rM* (given ρm from CMB)*

In absence of curvature, DO*-(DOM+rM*) = 0 

More generally (for |Ωk|<<1):

|DO*-(DOM+rM*)| =(|Ωk H0
2|)(DO*

3-DOM
3)/6

H
ere and N

ow

*Note: rM* is the comoving distance, equal to angular diameter distance DM* if Ωk = 0.



Determining Mean Curvature
ρm and DO*
determined 
from CMB

D0M
determined 
from 
something 
else (e.g., 
cosmic 
shear)

For zM = 3



Determining Mean Curvature
ρm and DO*
determined 
from CMB

D0M
determined 
from 
something 
else (e.g., 
cosmic 
shear)

For zM = 3

Error caused if dark energy at z > zM is neglected (assuming a 
cosmological constant).



Determining Mean Curvature



Determining Mean Curvature



Determining Mean Curvature



Ways to get DOM 

• Sne Ia (very difficult to get to z=2 or higher)
• Cosmic Shear   (as described earlier in the talk)
• Baryon oscillations  (Eisenstein & Seo 2004)
• 21cm radiation 

– Alcock-Paczynski type test + H(z) from CMB
– Baryon oscillations (Barkana & Loeb 2004)



A new SZ-Cosmic Shear 
synergy?



Hot baryons 
suppress shear 
power relative to 
case where baryons 
are replaced with 
dark matter of same 
mass.

Zhan & Knox (2005)

This is a highly 
significant effect 
for LSST at l > 
1000.



SZ observations can inform modeling 
of baryon profiles and thereby 

improve predictions for cosmic shear.

Zhan & Knox (2005)



Conclusions
• With the ‘high-z’ parameters pinned down by Planck, low-

z observations can concentrate on r(z) and g(z). 
• These ‘two windows’ may be crucial for unraveling the 

mystery of the current epoch of acceleration.
• They can be measured very well with a wide and deep 

cosmic shear survey.
• Distances into the matter-dominate era are key for 

precision determination of the mean curvature, an 
important test of inflation.  

• Baryons source gravitational potentials too:  SZ 
observations may be critical to making full use of cosmic 
shear data beyond l=1000.

• Please encourage your undergraduates to apply to UC 
Davis for graduate school!



143 GHz 217 GHz 353 GHz
CMB IR point sources SZ

10◦

Simulations by Jean-Baptiste Melin (UC Davis)



SZ map again



Recovered clusters


