Surveying for Clusters through SZ

Keith Grainge (with thanks to John Carlstrom)

Overview

- Introduction to the Sunyaev-Zel'dovich (SZ) effect
- History of SZ observations
- SZ surveys
 - Motivation
 - Instruments
 - Cosmology
- Second talk on AMI.

- Scattering of CMB photons from intra-cluster plasma
- SZ brightness independent of redshift

Sunyaev-Zel'dovich Effect

complements X-ray and lensing

Cluster physics

measure integrated pressure Peculiar velocities at high z

- Current best limits
$$\sigma(v_{pec}) \sim 1000 km/s$$

$$\frac{\Delta T_{SZE}}{T_{CMB}} \propto \int n_e T_e dl$$

Cluster gas mass fraction, $\Omega_{\rm b}/\,\Omega_{\rm M}$

- clean measure of baryon gas mass

Distances, H(z)

- *combined with* x-ray $\rightarrow D_A(z)$ Cluster surveys:

- exploit redshift independence
- constrain Ω_M , $\Omega_{\Lambda_{,}}\,\sigma_8,$ w, w(t)...

 $\propto \int \Delta T_{SZE} d\Omega$ $\propto \frac{1}{D_{A}(z)^{2}} \int n_{e} T_{e} dV$ $S \propto$

Experimental Challenge

- Small signal, large angular size
 - Need to make differential measurements
 - Synchronous offsets
 - \rightarrow like intrinsic CMB anisotropy experiments
- Contamination
 - Point sources in radio synchrotron emission (variable and correlated with clusters)
 - Point sources in mm/submm dust emission
 - CMB on large angular scales
- Systematics, systematics & systematics
 - Like CMB, best done with with instruments designed specifically designed instruments. Most (all?) measurements done to date on telescopes designed for other purposes.

SZE instruments

Existing/past SZE instruments:

Interferometers: Ryle (15 GHz), OVRO/BIMA (30 GHz), CBI, VSA Single dish radio: OVRO 40m, OVRO 5m, Nobeyama 45m, OCRA on Turan 32m Single dish bolometers: SuZIE on CSO 10m (SuZIE I,II,III) , Diabolo on IRAM 30m, SEST 15m, SCUBA on JCMT 15m, MITO 2.6 m (MAD 4 MITO), ACBAR on Viper 2.5m

Upcoming:

OCRA 2 [10] [100?] 30 GHz HEMT array on Toran 32m (Birkinshaw et al) Bolocam 144 element bolometer on CSO 10m MAD 4 MITO 4 bands x 9 bolometers on MITO 2.6 m, SuZIE III on CSO APEX-SZ 330 element bolometric array on APEX 12m Penn 8x8 bolometer array on the NRAO GBT 100 m

Next generation SZE *telescopes* and receivers:

Interferometers: SZA, AMI, 'AMiBA' Single Dish Bolometer: South Pole Telescope (10m), Atacama Cosmology Telescope (6m) 'Planck Surveyor Satellite' 1980's: Pioneering Work by Birkinshaw and Collaborators using the OVRO 40 m radio telescope using Dicke switching and leading / trailing fields

1990's: Followed up with the OVRO 5m (7' beam with 22' chop) by Caltech group: (Readhead, Myers, Herbig, Mason)Birkinshaw now working on OCRA 30 GHz focal plane array SuZIE Multiband <u>Bolometric</u> Observations Pioneered A/C – Chopped Bolometers, Drift scans on the CSO 1.2 mm & 2.1 mm channels, *First detection of SZE increment*

drift scans with CSO

Holzapfel et al. 1997, ApJ 480, 449, astro-ph/9702224 A/C bolometers on SEST and IRAM : Andreanni et al 1999, Desert et al, 1998, Pointecouteau et al., 1999, 2001 on MITO 2.6 m telescope: De Petris et al. 2002, astro-ph/0203303

Sample of the 60 OVRO/BIMA imaged clusters, 0.07 < z < 1.03

Measured SZE Spectra

For 10 more spectra see Benson, Church et al., Aug 1st 2003, ApJ

Distances from SZE and X-Ray

SZE Surveys Exploit SZE redshift independence

Use SZE as a Probe of Structure Formation and to provide well defined high-z cluster sample

SZE contours every 75µK. Same range of X-ray surface brightness in all three insets.

SZE Flux :
$$S \propto \frac{1}{d_A(z)^2} \int n_e T_e dV$$

Proportional to total thermal energy

Mass limits and yields for a SZE Survey

- Mass is most important variable
- Yields are highly sensitive to cosmology . . .

Mock SZA-like observations from Holder et al. 2000, ApJ 544, 629

The **SZA:** *eight* <u>3.5m</u> *telescopes* (from the OVRO/BIMA SZE program)

- For 1 cm $\leq \lambda \leq 1$ mm observing:
 - 30 um RMS surface
 - 1 arcsec rms pointing spec
- Allow close pack configuration:
 - 1.2 diameter minimum spacing
- 8 GHz correlation bandwidth
- 26–36 GHz & 85 115 GHz
- Stand alone array
 - \rightarrow 12 square degree SZE survey
- Heterogeneous array with CARMA
 - \rightarrow sensitive, high resolution,
 - 5-10" SZE imaging

• Now WORKING!! First astronomical map with 8 elements and full correlator made 3/1/05

Chicago, Caltech, NASA/MSFC,Columbia

Telescope designed with Vertex/RSI, lead designer: Eric Chauvin, based on initial design by Dave Woody

Holder, Haiman & Mohr astro-ph/0105396

CARMA: OVRO+BIMA+SZA dramatically improved imaging

 \rightarrow Will allow detailed SZE imaging at 5" resolution(!) Useful to address cluster gas properties and evolution

SZE Bolometer Arrays in Progress

Bolocam

- Caltech 144 element array at 2mm for the CSO <u>Exists, science runs in progress</u>
- UMASS Bolocam-2 array for the 50-m LMT in Mexico

APEX (12 meter ALMA prototype)

- U.C. Berkeley 300 element array on the Max Planck prototype ALMA 12m telescope at Atacama
- SPT (South Pole Telescope; 8/10 meter)
 - with 1000 element array being developed at U.C. Berkeley
- ACT (Atacama Cosmology Telescope; 6 meter)
 - with 1000 element array being developed at NASA/Goddard

ACBAR SZE Measurements at 5' resolution Use SZE spectral signature to remove CMB temperature fluctuations

Abell A3266 z = 0.059

Gomez et al, astro-ph/0301024

Form a linear combination of maps that minimizes CMB + instrument variance.

ACBAR 150 GHz SZE Survey Marcus Runyan PhD thesis No convincing detections due to high mass limit from 5' beam

APEX-SZ 330 element Spiderweb TES Bolometer Array

Atacama Cosmology Telescope (ACT)

- 6m off-axis dish with ground screen
- 1000 element bolometric arrays (pop-ups)
- Deploy near ALMA site, Chile
- Fully operational ~2008
- NSF Funded

Collaboration:

Cardiff	Columbia	CUNY	Drexel	Haverfo	ord	NA	SA/GSFC	
Penn	Princeton	Rutgers	Univ. de Catolica		UMASS			

Cosmology with SPT-SZ

Summary

Observations of the SZE have improved, but cosmology with the SZE is just starting:

- Deep, fairly narrow, SZE surveys will be done in the very near future.
- Detailed, precise, high resolution SZE imaging in a couple years.
- Very large, deep SZE surveys will be done in a few years

There is a lot of work to do:

- Confronting real clusters
 - Understand going from observables to cluster mass: understanding scatter in mass observable relation, testing self-calibration, detailed SZE imaging, simulations.
 - Develop a better way to comparison observations with predictions from cosmological models?
- Redshifts for large SZE surveys

ALMA: 64 -12m telescopes, Atacama, Chile

ALMA observations of the Sunyaev-Zel'dovich Effect using 30-43 GHz receivers

• SZE mock observation with ALMA in compact configuration. The simulated cluster (left panel) is $2.5 \times 10^{14} M_o$ at z = 1 and would be detected at 5σ in the SZA survey. ALMA equipped with 30 - 43 GHz receivers would image this cluster easily with high resolution, 10" and 14 μ K rms, in a couple hours (center panel) and the same data smoothed to 22" results in 2.7 μ K rms (right panel).

• Japan may join ALMA and build a sub array of 12 seven meter telescopes for ALMA making it fantastic for SZE measurements.

Example of spatial separation of SZE and point source emission

BIMA Observations of RX J1347-1145

Simulated Compton y map from WHS

Testing mass limit with mock SZA surveys (by Clem Pryke)

Ryle Telescope, MRAO Made first interferometric SZE image in 1993, Abell 2218

AMI Instrument Specs

- Arcminute Microkelvin Imager
- MRAO/Cavendish/Cambridge group
- •10 x 3.7m at 15 GHz
- •NRAO HEMT receivers, ~13K noise, ~25K system noise
- •6 GHz analog correlator
- FOV_{FWHM} ~ 21', Beam_{FWHM} ~ 4.5'
- concurrent point source monitoring by <u>Ryle Telescope</u> (8 x 13m),

no heterogeneous correlation

•<u>Almost online, should find ~100</u> <u>clusters</u>

