Observations of Galaxy Cluster X-ray Scaling Relations

Effects of Cool Cores and Mergers on Cluster Cosmology

Joe Mohr and Tim O'Hara
Department of Astronomy
Department of Physics & NCSA
University of Illinois

Reporting on some of Tim O'Hara's thesis work...

- Scaling relations as tools
- Tale of scatter in scaling relations
- Cool core and merging effects

Cluster Scaling Relations

- Cluster scaling relations discovered in observations and reproduced in hydro simulations indicate a reasonably high degree of regularity
- Scaling relations have been observed using X-ray, NIR and Optical properties of galaxy clusters

Cluster Scaling Relations

- Cluster scaling relations discovered in observations and reproduced in hydro simulations indicate a reasonably high degree of regularity
- Scaling relations have been observed using X-ray, NIR and Optical properties of galaxy clusters

Cluster Scaling Relations

- Cluster scaling relations discovered in observations and reproduced in hydro simulations indicate a reasonably high degree of regularity
- Scaling relations have been observed using X-ray, NIR and Optical properties of galaxy clusters

Crude Observables as Structure Tests

- Measurements of the X-ray luminosity, ICM mass, X-ray mean temperature, galaxy light, X-ray isophotal size, etc provide integral constraints on the structure of the cluster
- Taken together, this ensemble of observables allows us to examine structural variations in clusters at fixed T_x (a mass proxy)

$$L_{X} = \int_{V_{500}} d^{3}\vec{x} \, n_{e}^{2} \frac{\mu_{e}}{\mu_{H}} \Lambda(T)$$

$$M_{ICM} = \int_{V_{500}} d^{3}\vec{x} \, \mu_{e} m_{p} n_{e}$$

$$\langle T_{X} \rangle = \int_{V_{500}} d^{3}\vec{x} \, n_{e}^{2} \frac{\mu_{e}}{\mu_{H}} \Lambda(T) T / L_{X}$$

$$L_{K} = \sum_{V_{500}} L_{i}$$

Scaling Relation Studies are Complementary to Detailed Studies

- Long exposures of bright clusters with Chandra and XMM produce ~10⁵ photons, which enable nonparametric deprojection
- These highly detailed studies are critically important, but dependent upon assumptions of spherical symmetry and regularity
- Crude observables can be extracted on a much wider range of clusters

Sanderson, Finoguenov & Mohr 2005

Cluster Populations are Young

- Morphological merger indicators have been used to study flux limited samples of clusters. A large fraction of local clusters exhibit evidence for recent mergers (> 50%; e.g. Mohr et al 1995)
- Chandra observations of higher redshift clusters provide evidence that cluster substructure is even more common at higher redshift (e.g. Canizares et al 2004)
- If we restrict ourselves to the clusters that are roughly circular on the sky, then we study a rarer and rarer subclass of objects as we move to higher redshift

Galaxy Cluster Surveys are Powerful Structure **Formation Based Cosmological Tests**

- Cluster surveys measure the:
 - Cluster redshift distribution
 - Cluster observable distribution at each redshift (mass function)
 - Spatial clustering of the clusters
- Cosmology sensitivity through
 - Volume-redshift relation
 - Distance-redshift relation
 - Growth rate of cosmic structure
 - Power spectrum shape

Some papers focused on the Cluster Survey Technique

Wang & Steinhardt 1999

Majumdar & Mohr 2003

Haiman, Mohr & Holder 2000 Hu 2003

Holder, Haiman & Mohr 2001 Weller & Battye 2003

Weller et al 2001

Majumdar & Mohr 2004

Lima & Hu 2004

Levine et al 2002

Wang et al. 2004

Benson et al 2002 Weller et al 2002

White & Majumdar 2004

Hu & Kravtsov 2003

Lima & Hu 2005

$$\frac{dN(z)}{dzd\Omega} = \frac{dV}{dz\,d\Omega}n(z)$$

Technique does not require direct mass measurements. Rather, it relies on the use of massobservable scaling relations and the technique of self-calibration.

Cluster Surveys Provide a Powerful Tool for Cosmology

- Cluster constraints on dark energy:
 - The cluster redshift distribution, the cluster power spectrum and 30% accurate mass measurements for 100 clusters between z of 0.3-1.2
 - Fiducial cosmology (WMAP: σ_8 =0.84, Ω m=0.27); 29000 clusters in the 4000 deg² SPT survey.
- The joint constraints on w and Ω_m :
 - Curvature free to vary (dashed); fixed (solid)
 - Marginalized constant w 68% uncertainty is 0.046 (flat) or 0.071 (curvature varying)
- Parameter degeneracies are complementary
- Several large scale cluster surveys are in the build phase or almost underway

So What About Scatter in Scaling Relations?

- Scatter is resolved in scaling relations
 - Scatter quantifies the variation in structural properties at a fixed mass in the cluster population
- We examine whether mergers or some other process are the primary driver of the scatter
 - Examine cluster deviation from scaling relation and whether that correlates with merger indicators

Merger Indicators and Cluster Sample

- For each cluster we measure the centroid variation, axial ratio (Mohr et al 1993) and two power ratios P₁/P₀ and P₂/P₀ (Buote & Tsai 1995)
- No substructure indicator is 100% accurate... typically indicators are insensitive to mergers taking place along the line of sight

Local sample:

Use ROSAT observations of the Edge sample of brightest clusters (45 of 55 observed)

Intermediate redshift sample:

Use sample of clusters from the Chandra archive

Scaling Relations

- Correlated excursions in two observables may lead to minimal merger related effects, so we look at a wide range of observables
 - T_x
 - L_x(r500), L_x(no core), R_I(3e-14cgs), $M_{icm}(r500)$, L_K(r500)
 - $L_x(r2500)$, $R_I(1.5e-14cgs)$, $M_{icm}(r2500)$
- We are effectively examining the cluster morphology in a 9 dimensional space of crude cluster observables
 - To aid in visualization, we examine the population using individual pairs of observables

Effects of Cool Cores

- The first thing one notices is that CC and NCC clusters (as measured by estimates of central cooling times) behave differently
- Consider the Lx-T relation (and see Fabian et al 1994)
- This effect is huge in the Lx-T relation, but it is present at a measureable level in other relations

Effects of Cool Cores

- The first thing one notices is that CC and NCC clusters (as measured by estimates of central cooling times) behave differently
- Consider the Lx-T relation (and see Fabian et al 1994)
- This effect is huge in the Lx-T relation, but it is present at a measureable level in other relations

- To go beyond this dominant CC effect, we attempt to remove it by introducing a temperature scale factor to "heat" the CC clusters (or equivalently "cool" the NCC clusters)
- We examine the χ² around the relations as a function of this scale factor— taking the minimum in the scatter as the preferred temperature scale factor

$$\langle T_x \rangle_{CC} \Rightarrow \langle T_x \rangle_{CC} (1 + \beta)$$

- To go beyond this dominant CC effect, we attempt to remove it by introducing a temperature scale factor to "heat" the CC clusters (or equivalently "cool" the NCC clusters)
- We examine the χ² around the relations as a function of this scale factor-- taking the minimum in the scatter as the preferred temperature scale factor

$$\langle T_x \rangle_{CC} \Rightarrow \langle T_x \rangle_{CC} (1 + \beta)$$

- To go beyond this dominant CC effect, we attempt to remove it by introducing a temperature scale factor to "heat" the CC clusters (or equivalently "cool" the NCC clusters)
- We examine the χ² around the relations as a function of this scale factor— taking the minimum in the scatter as the preferred temperature scale factor

$$\langle T_x \rangle_{CC} \Rightarrow \langle T_x \rangle_{CC} (1 + \beta)$$

- For $L_x(r2500)$ the temperature scale factor is huge! (50%), but for $M_{icm}(r500)$ it is rather small (5%).
- The more "core sensitive" an observable the larger the CC effect
 - Can use non-core sensitive measures to estimate how much the emission weighted mean temperature T_x is really biased! (~10%)
- Even with this "binary" CC/NCC correction, our dominant source of scatter is still residual CC effects
 - Scatter in CC sample larger than NCC sample in every case, e.g.
 - L_v-T (CC-0.16, NCC-0.12)
 - M_{icm}-T (CC-0.09, NCC-0.04)
 - R_I-T (CC- 0.07, NCC-0.04)

$$\langle T_x \rangle_{CC} \Rightarrow \langle T_x \rangle_{CC} (1 + \beta)$$

- For $L_x(r2500)$ the temperature scale factor is huge! (50%), but for $M_{icm}(r500)$ it is rather small (5%).
- The more "core sensitive" an observable the larger the CC effect
 - Can use non-core sensitive measures to estimate how much the emission weighted mean temperature T_x is really biased! (~10%)
- Even with this "binary" CC/NCC correction, our dominant source of scatter is still residual CC effects
 - Scatter in CC sample larger than NCC sample in every case, e.g.
 - L_v-T (CC-0.16, NCC-0.12)
 - M_{icm}-T (CC-0.09, NCC-0.04)
 - R_I-T (CC- 0.07, NCC-0.04)

$$\langle T_x \rangle_{CC} \Rightarrow \langle T_x \rangle_{CC} (1 + \beta)$$

Correcting for Cool Cores Using Central Surface Brightness

- Binary CC/NCC sample division (by central cooling time) is still unsatisfactory-- there is a continuum of clusters lying between NCC to strong CC
- With a tracer of the CC strength, one could further remove the CC related effects-- and then probe the residual scatter for merger effects
- Notice that central surface brightness traces central cooling time reasonably well, and that it also correlates with scatter in the scaling relations

Correcting for Cool Cores Using Central Surface Brightness

- Binary CC/NCC sample division (by central cooling time) is still unsatisfactory-- there is a continuum of clusters lying between NCC to strong CC
- With a tracer of the CC strength, one could further remove the CC related effects-- and then probe the residual scatter for merger effects
- Notice that central surface brightness traces central cooling time reasonably well, and that it also correlates with scatter in the scaling relations

So What About Residual Scatter After Removing CC/NCC Effects?

- After using the surface brightness to remove the dominant source of scatter-the CC/NCC variation in the population-- we examine scatter about the Lx-T versus substructure indicators
- Surprisingly, there are no clear indications that the clusters with higher substructure exhibit larger scatter about the scaling relations

Scatter vs Substructure in All the Observables

- We find no clear trend for increasing scatter with level of substructure!
 - True for centroid
 variation, ellipticity,
 P₁/P₀, P₂/P₀
- This is true with the scaling relations treated using temperature boost factors or using the more elegant central surface brightness correction

What Could Be Going On?

- Merger related scatter could be masked by some additional source of scatter
 - Residual CC related scatter?
 - \blacksquare T_x measurement systematics? (could look at non-Tx relations)
 - Variations in AGN feedback from cluster to cluster?
- Morphological merger indicators may be poor tracers
 - Perhaps only trace major mergers well
 - Look at simulated clusters...
- Clusters are young objects and merger effects are long lived
 - Whether or not clusters appear to be regular they exhibit similar amounts of structural variation

Scaling Relations without T_x

- We examine a scaling relation made without Tx and with quantities that are relatively insensitive to the core structure of the cluster: M_{icm}(r500)-R_I
- This scaling relation has strikingly small scatter, providing another indication that it is the core that is driving the scatter
- No clear indication that clusters with higher substructure scatter more in this relation

O'Hara et al, in preparation

Scaling Relations without T_x

- We examine a scaling relation made without Tx and with quantities that are relatively insensitive to the core structure of the cluster: M_{icm}(r500)-R_I
- This scaling relation has strikingly small scatter, providing another indication that it is the core that is driving the scatter
- No clear indication that clusters with higher substructure scatter more in this relation

O'Hara et al, in preparation

Scaling Relations with Simulated Clusters

- We examine the scaling relations in 68 hydro simulations in collaboration with Gus Evrard and John Bialek
 - These sims do not include cooling, so there can be no CC effects
- Clusters with the highest substructure do, perhaps, provide some indication of higher scatter, but it is a subtle effect!

O'Hara et al, in preparation

Conclusions

Cluster scaling relations contain a wealth of information on *entire* cluster population

- Critically important for cosmology
- Slopes provide tests of self-similarity
- Scatter provides measure of structural variation

CC/NCC differences are the dominant structural variation in clusters

■ Scatter in scaling relations completely dominated by CC effects

Merger related signatures weak or absent after removal of CC effects

■ No correlations between scatter and substructure measures

Implications

- Cautionary tale for those who would use the low ellipticity or presence of a CC as evidence that the cluster is "highly relaxed"
- Suggests that concern for cluster surveys will be the changing fraction of CC/NCC clusters with redshift rather than the increased number of mergers... this is good news for the SZE surveys