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Summary. A cloud of completely ionized plasma with sources of
photons distributed in it is considered. The photon diffusion
problem is solved and the distribution of the photons over their
escape times is found to be similar to the light curve for X-ray
bursters.

The solution of the stationary Kompaneets equation is given by
the Whitteker function. The formation of radiation spectra due to
comptonization in both cold and hot electron plasma clouds are
obtained. The formulae obtained allow the plasma temperature in
the region of the main energy release in Cyg X-I source to be
determined.

The effect of Comptonization on the X-ray iron spectral line
profiles strongly depends on the law of photon sources distribution
over the plasma cloud.
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1. Introduction

1. The Formulation of the Problem

Let us consider a spherical plasma cloud of radius R, with electron
density N, and temperature T,. The plasma is completely ionized.
The plasma and the radiation interact only via Compton scatter-
ing. The optical depth of the cloud with respect to Thomson
scattering is 7, > 1. There is a source of photons in the center of the
cloud. This is the simplest geometry of the problem. Later we shall
also consider the cases where the source of photons is distributed
over the cloud volume and the cloud is non-spherical.

The First Problem

At the moment t=0, a flare of the central source occurs. We
consider the flash to be instantaneous. Therefore the time de-
pendence of the central source luminosity is given by delta function
4(2). Solving the problem of photon diffusion in the cloud one can
obtain the distribution P(t) of the photons over their time of escape
from the cloud. Obviously the problem is of interest for the
interpretation of the observations of bursters — the sources of short
X-ray bursts (Lewin and Joss, 1977). If the characteristic time of
energy release in the source is quite small the time dependence of
the radiation flux is determined by the time delay due to the photon
diffusion in the plasma cloud surrounding the source.
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The Second Problem

It is known that multiple scatterings of X-ray photons on thermal
electrons result in comptonization of the radiation — that is in
distortion of the initial spectrum. In each scattering the frequency
of the photon changes due to the Doppler and recoil effects. If
kT,>hv the average energy of the photons increases after the
scattering Av/v ~kT,/m,c?. If kT,<hv the recoil effect results in
decrease of the photon energy 4v/v~ —hv/m,c>.

The Kompaneets equation enables one to find the solution of
the problem: the time evolution of a given initial radiation
spectrum due to comptonization in a homogeneous infinite
medium with an electron density N, and temperature kT,,. Solving
the Kompaneets equation and giving the initial spectrum
I4(v,t=0) the spectrum shape I(v, t) can be found at any given time
or after any given number of scatterings. Unfortunately, in
astrophysics, the problem of a homogeneous infinite medium is of
immediate interest to cosmology only.

The Third Problem

Again let us consider an instantaneous d(t) source of photons with
given spectrum I,(v,t=0) in a plasma cloud of a given geometry.
The function ¥(v, t)=I(v, t)P(t) evidently gives the time dependence
of the spectrum of the radiation emerging from the cloud. In
application to the bursters problem we obtain the radiation
spectrum evolution during an X-ray burst.

The Fourth Problem

It is suggested to search for a stationary spectrum of the radiation
escaping from the plasma cloud using the results of the first and the
second problems. It is assumed that stationary sources of photons
exist in the cloud. Indeed, from the solution of the first problem we
know the fraction of the photons that have spent a time ¢ in the
source. At the same time the solution of the second problem gives
the spectrum of the photons subjected to u= N, ct scatterings.
Obviously (see for example Chaplin and Stevens, 1973 ; Miyamoto,
1978) it is the convolution

F(v)= }) I(v,H)P(t)dt 1)
0

that gives the stationary spectrum of the radiation escaping from
the plasma cloud. Formula (1) is correct only in the case where the
role of induced scattering is negligible.

From the astrophysical point of view the fourth problem is of
special interest, because:

a) X-ray iron lines have been discovered recéntly in Her X-1
(Pravdo et al,, 1977) and in Cyg X-3 (Kestenbaum et al., 1977). The

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://ads.nao.ac.jp/cgi-bin/nph-bib_query?1980A%26A....86..121S&amp;db_key=AST

FTI98DARA © C.-86. IZ1T

122

photons are generated in the hot plasma or in the cold atmosphere
of the normal star, irradiated by hard X-ray radiation of the binary
X-ray source. Then they pass through the plasma surrounding the
photon-line source (see the discussion of the astrophysical situation
in Felten et al., 1972 ; Basko et al., 1974 ; Pozdnyakov et al., 1979a;
Basko, 1978). Comptonization may considerably change the line
profile. In the next section we shall present the result: an analytic
formula for the profile of the line (locally a monochromatic line
Fo(v)=6(v—v,) is emitted) escaping from the plasma cloud with the
given 7, and T,

b) It enables one to analyze the change of the spectrum of the
soft X-ray (or even optical or infrared) radiation passing through a
hot plasma cloud with kT, > hv. The difference in the photon escape
times leads to a difference in the number of photon scatterings and
this may give rise to the formation of a hard power law X-ray
spectrum (Katz, 1976 ; Shapiroet al., 1976 ; Pozdnyakov et al., 1976,
1977, 1979b). It was mentioned by Eardley that this mechanism is
similar to the well-known Fermi cosmic rays acceleration
mechanism.

This problem is of particular interest in the case of Cyg X-1
where the power law spectrum of hard X-ray radiation (3 + 80 keV)
is observed. It is likely that this mechanism is also responsible for
the hard X-ray power-law spectra of quasars and nuclei of active
galaxies (Katz, 1976).

¢) The solution of the fourth problem enables one to determine
the spectrum distortion of the hard X-ray radiation, passing
through a “cold” kT, <hv plasma cloud, surrounding the central
source. Such a situation probably takes place in the case of
Cyg X-3.

2. Summary of Well-known Results

We would like to give some background before presenting new
results. The equation

on 10 , ., On
T — 2
dy X2 ox (n+n +6x @
describing Compton interaction of the radiation (hv <m,c?) with
the matter (kT,<m,?) was published by Kompaneets in 1956.
Here n=c?I /8nhv? is the photon occupation number in the phase-

space, I, is the radiative intensity, x=hv/kT, is the dimensionless

e

kT, kT, . L
frequency and y=m—;aTNect= >u is the comptonization
m,c

e e

parameter.

The Solution of the Second Problem

If the terms n and n? in brackets in Kompaneets’ equation are
neglected, it will describe only a Doppler photon-frequency change
due to scattering, Zeldovich and Sunyaev (1969) found the Cauchy-
problem solution for the resulting diffusion equation

_ 2 (Inx+3y—Inz)?) dz
n(x,y)= mbfn(z)exp{—T}7 3)

where n(z) is the arbitrary initial spectrum. If I (x,t=0)
= Ax,0(x —Xx,), then

. (lnx0+3y—lnx)2}

I(x,y)= 4 exp{
|/ 4ny 4y

Q)

on . .
If the terms n® and 7 n the Kompaneets equation are

neglected it describes the spectrum change due to the recoil effect.

For this limiting case the equation has been solved by Illarionov
and Sunyaev (1972a) and Arons (1972). The quantity nv* is
constant along the characteristics

dv R h
W——V N dV = mecO'TNedt.
- . dz
The characteristics may also be written as e orN h/m, or
di
Ei: = h/ m,C.

Kompaneets (1956) has solved the Cauchy problem for Eq. (2)
neglecting the term proportional to n? in brackets. The solution is
given by the Whittaker functions of imaginary index.

The Solution of the Fourth Problem

Illarionov and Sunyaev (1972a) have suggested to estimate the role
of Compton effect in the spatial problem using the solution for the
homogeneous infinite problem. They substituted the time ¢ in the
solution of the second problem with the effective time Rty/c of

e
CZ

hv
2 — 2
75 and z=—->1;.

e
Miyamoto (1978) have calculated numerically the photon escape

time distribution as well as the influence of comptonization upon
the spectrum. Katz (1976) solved numerically the full Fokker-
Planck equation which describes both the space diffusion of the
photons and spectrum evolution due to comptonization. Shapiro
et al. (1975) have found most important asymptotics of the 4b
problem (see the discussion below) solving analytically the approx-
imate stationary Kompaneets Eq. (13). We shall show below that
the solution of the stationary Kompaneets Eq. (13) is given by the
Whittaker functions with real indices.

We shall present later the analytic formulae and diagrams for
the solutions of the problems 1, 3, 4a, 4b, 4c, obtained under the
assumption of a simple geometry of the plasma cloud and a
simplest distribution of the sources of soft photons in the cloud.
The results of Monte Carlo computations (Pozdnyakov et al., 1976,
1977, 1979a, 1979b) stimulated us and helped us in the analytical
solution of the problem. Monte Carlo calculations have also been
done by Angel (1969), Loh and Garmire (1971) and Ross et al.
(1978).

We must mention also a more simple effect. Even the coherent
Thomson scatterings changes the free-free radiation spectrum from
the plasma cloud with 7,> 1, if Thomson opacity exceeds the free-
free opacity (Zeldovich and Shakura, 1969 ; Shakura, 1972 ; Felten
and Rees, 1972; Illarionov and Sunyaev, 1972a,b).

k
photon escape from the cloud. Thus y=r

II. The Distribution of Photons over the Escape Time

1. A Homogeneous Sphere

The solution of the problem is presented in Appendix A. If the
source of photons is situated in the center of the sphere, the function
P(t) is as shown in Fig. 1. It is convenient to introduce dimension-
less time u=oyN,ct, characterizing the number of collisions
experienced by a photon in the cloud. In the diffusion problem u> 1
and it may be regarded as a continuous variable rather than a

0

discrete parameter. The average photon escape time is t, = | tP(t)dt

0
=R1,/2c, the average number of scatterings being #t=13/2. The
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Fig. 2. The distribution of the photons over the escape time. a a
spherical plasma cloud with 7, =10; curve 1-central position of the
source of photons; 2 — the sources of photons are uniformly
distributed over the cloud; 3 — the sources are distributed
according to the law (8). b semi-infinite medium : 4 — the sources are
0.25 — - at the depth 7,=10; 5— the sources are uniformly distributed in the
zone 011,
u
?.T For u»u,
0.00 | | | 1 | | ] ) nu
0.0 0.4 0.8 1.2 1.6 2.0 Ps(u);—zexp{— —2} (5a)
75 315

Fig. 1. The distribution of the photons over the escape time for a
spherical plasma cloud. The source of the photons is in the center of
the cloud. At t =0 the source gives an instantaneous radiation flare.
The dimensionless time u=o;Nct characterizes the number of
scatterings experienced by a photon in the plasma cloud. The curve
is computed for the case of the optical depth 7, =10, with respect to
the Thompson scattering

peak of P(t) lies near ¢t =0.3Rt,/c or uy=0.3t%. When u>u, we have
asymptotics

272 . { un? } )
—_— x —_———
3+ 22 P ko427

and when 1 <u<u,

P,(w)=

3)/3 12 32
Pz(“"rﬁme’“’{‘ ol ©
The function P(u) is well described by composition of asymptotics
of the kind: -

3)/3 12 8n? (u\3? 372 un?
B Sl ) el T

In case of uniform distribution of the sources of photons over the
sphere volume the function P(u) has the shape shown in Fig. 2. For
small 1 <u<u,

P4(u)gi(i)1/2 (1 - i(ﬁ)m) )
To \TU To\ 3

the asymptotic coincides with P,(u). It is convenient to use the
composition of asymptotics

1 l /3 Vu nlu

In this case #=13/5.
Interesting is the case where the sources of photons are
distributed according to the law (see Fig. 3)

Ty . TT
o(t)=—2sin—. (8)
T T,
This is an intermediate case between those of uniform distri-
bution of the sources and the central source. In this case P(u) is very
simple because it is an eigenfunction of the diffusion equation

2 2y
PO = 5 genp |~ 3y gy —Pexp(— ) o
where
B=2/3(ro + 3= .
o

The average number of scatterings experienced by the photons in
the source is equal to u=p"1.

2. Inhomogeneous Density Distribution

The case where the electron density in a spherical cloud is
distributed according to the law N,~r~2, is of interest from the
methodological point of view. Here the equation of photon
diffusion (see formula (A.1) in Appendix) is identical to
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Fig. 3. Properties of the photon sources distribution (8). 1 ~ the
dependence of the sources density on the radius or t. 2 — the ratio of
the luminosity of the sources in the zone with t less than the one
given to the total luminosity of all the sources in the cloud. For
comparison the same ratio is given for the case of a uniform
distribution of sources (curve 3) and for the central source (curve 4)

Kompaneets’ Eq. (2) if in the latter the terms (n + n?) in brackets are
neglected (which are responsible for the frequency change due to
the recoil effect in spontaneous and stimulated scatterings). The
solution of the Cauchy problem is determined by formula (3). Let us
consider a sphere of radius r,, to be a source of photons and a
sphere of radius r, to be the boundary of a plasma cloud. The

el
optical depth of the cloud is ¢;N,dr=t, and [ o;N,dr=1

(to>1). The problem is formallyoreduced to the soh‘xtion of the
Cauchy problem for a semi-definite medium. Using solution (3) and
the reflection method (see Appendix A) we find

2\3/2 2142
P)=3 Inz, (3r ) exp{—3—u2—3t°1n ‘EO}'
T, l/_ 41§ 4u
The exact solution contains both asymptotics (5) and (6) we are
interested in.

3. Semi-definite Medium

If the sources of photons are at the depth 7, > 1 in the semi-infinite
homogeneous medium, then:

3 2
el 5}

If the sources are distributed uniformly in the layer 0=t <1,, then

P(u)= ﬁ(l —exp{— %})
)

P(u)= (11)

(12)

When u> 12 both formulae (11) and (12) have asymptotic
Pu)~u~32,

When u <% formula (12) coincides with (7). Of interest is also
the case of an exponential flat atmosphere with

N,=N, exp{— r;;l} and the radius of the lower boundary
surface r, > H. The photon sources are located at the depth 7, <1,

where 7, = j orN dr. If the albedo of the lower boundary surface

A=1, then, w1th u<tZ, the photon escape is determined by an
asymptotic of P,(u) kind. With 12 <u<1? we obtain

C
Pu)~ 373 eXP {—u/373}

and with u>1? the asymptotic P(u)=~exp{—u/t?} takes place.
When A=0 the portion of photons absorbed by the lower
T0+2/3

boundary surface is equal to 1 27 e 43

4. Disk

If in a homogeneous disk the sources of photons are distributed in
the plane of symmetry or homogeneously over its volume, then P(u)
differs slightly from the approximate formulae for a spherical
plasma cloud. If sources are distributed according to the eigen-
function of the diffusion equation

P(u)=Bexp(—pu) and B=n2/12(z,+2/3)*.

Here 7, corresponds to the halfthickness of the disk.

If the surface of the disk is illuminated from the outside by an
instantaneous flare, part of the photons penetrate into the disk and
later, after diffusion in the disk, escape from it. Then, P(u)
=1/2(nu)*/? when 1 <u<12,

4
P(u)= T—ﬂexp(—ﬁu), when u>1§.
(4]

5. Cylinder
In this case B=237%/16(t, +2/3)%.

III. Solution of the Stationary Equation of Comptonization

When the probability of photon escape from the plasma cloud is
given by the simple formula P(u) = ff exp(— fu) the comptonization
problem is substantially simplified and may be reduced to the
solution of the stationary equation (Chapline and Steevens, 1973;
Shapiro et al., 1976). Let us remind that the exponential law of
photon escape from a homogeneous plasma cloud holds only
when the sources of photons in the cloud are distributed according
to law (8).

Let us write out the stationary equation which is in fact the

@

equation for the convolution N(x)= | n(x, u)P(u)du with P(u) given
0

by (9). For this purpose, we shall integrate Kompaneets’ Eq. (2)
(without the term responsible for the induced scattering) pre-
liminary multiplied by fexp(— fu)

* i) i
g Bexp(—ﬂu)idu: % ax“
(T Brnexp(— pu)du+ io‘\?,Bnexp(—,l.‘iu) du.
0 0x o

KT,
= 2.

m,c
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Integration by parts of the left part of the equation taking into
account the initial condition n(x, 0)= f(x)/x> yields:

14 ,(dN

Lt (G 4N ) =N (13
where

r=Bla=rm e+ T, am s, (14

e

In this equation f(x) determines the radiation spectrum of the
photon sources, their spatial distribution ¢(t) corresponds to (8).
The plasma is assumed to be isothermal. In the Kompaneets’ Eq. (2)

. dN . .
and in Eq. (13) the term 2 n brackets describes the energy change

of the photon due to the Doppler-effect. The term N in brackets
describes the energy change due to the recoil effect.

Equation (13) can be solved easily in two limit cases:

a) when kT,> hv, ie. x <1 and one can neglect the recoil effect
as compared with that of the Doppler effect;

b) vice versa when hv>kT, and the recoil effect is more
important. We shall find below the solutions of Eq. (13) in these
simple cases, then the solution of the full Eq. (13) taking into
account both Doppler and recoil effects. This solution is conveyed
by the Whittaker function.

1. kT,> hv; the Spectrum of the Escaping Radiation

If the recoil effect is neglected then from (13) we obtain the equation

1 d

x“il—v— —yN +9f(x)/x3=0

x2dx” dx (15)

taking only into account the Doppler change of the photon
frequency. If the source spectrum is represented by the é-function
f(x)=x,0(x—x,) its solution F(x,x,) is

oo+ 3)

— 3
Filxx)=x Qu+3)

(’0)

olo+3) [ x ( )
(2a+3) \x,

The number of photons is normalized to the unity

at+3
( ) when 0=x=x,
Xo
(16)
( 9 0)

when x,<x<o0.

® dx % dx

This solution describes the distortion of the monochromatic line
spectrum due to scattering on hot electrons. The radiation
spectrum is power law in both wings of the line.

The spectral index in the high frequency wing of the spectrum is
equal to

a=G+9)"-3 ()

(Shapiro et al., 1976). In Sect. IIL4. it is shown that for a source with
the Planckian spectrum with T, < T, the far wing k7, <hv < kT, of
the spectrum of the radiation emerging from the cloud has the same
shape as (16).

Monte-Carlo calculations (Pozdnyakov et al, 1979b) have
shown that the resulting spectrum in the problem with 7,=3 and
kT,=50 and 100keV on the range x,<x<1 has the spectral
indices coinciding with (17) to an accuracy of several percent. In the
case of small 7, <3 the spectral indices differ drastically from (17).
There is also great discrepancy between the results of the Monte-

Carlo calculation and the approximation in the problem with kT,
=250keV and 7,=3. Let us remind that Pozdnyakov et al. (1977)
have obtained for the spectral index o an analytic formula that is
true in the limit 1, <1, kT,>m,c?

kT, )2

m,c*

and Pozdnyakov et al. (1979b) have given an approximation
formula

o= —lgto/lg12(

kT,

e

a=(—1gto+2/(a+3)1g(12a> +25a), a=—F5

m.c

e

which well describes the results of Monte-Carlo calculations when
kT,>50keV and 7,<3.

2. kT,>hv; Energy Loss by Electrons

It has been shown that in the infinite homogeneous medium the
radiation energy density increases with time according to the law
&, =&, exp(4y) (Kompaneets. 1956). This law is correct only when
the Doppler effect dominates. The same method is used to multiply
Eq. (13) by x® and integrate it over x. As a result, we find that when
the luminosity of the sources of photons is L, the total luminosity
of the plasma cloud is

3
L=Loy/—4)=Lo; dotd) (18)

a—1)(a+4)
The solution is true only when y >4, a> 1 (see the discussion in Sect.
IIL5.).

3. hv>kT,; the Shape of the Radiation Spectrum

In the ultimate case of low temperature plasma and sources of hard
photons in the cloud the problem is reduced to the solution of the
following equation:

1d

= —z4N—BN= —Bf(z)/23.

T (19)

In this approximation Doppler effect does not influence the
spectrum, therefore the resulting emission spectrum is independent
of electron temperature. It is suitable to introduce a dimensionless
variable z=hv/m,? instead of x=hv/kT,,

The solution of Eq. (19) is as follows:

B ? g

F\(2)=—exp(—f/2) fr© eXp(ﬂ/é)?- (20)
With f(z)=2,6(z—z,) we find how the recoil effect influences a
monochromatic line profile

1

ro=Lexn{ (> - z—o-)} 0(z,—2) (200)
where

oe0=9={) Wi 1o

is the @-function,

B_ m’mc?

z 3(tg+2)*hy’
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For a power law spectrum of the sources f(z)=Az™* the
integral in (20) can be easily found in case a=1. Two simplest
examples with a=1 are given:

F 2= §[1 —exp(=p/2)] p le_f

and o=2

Ap

A
Fi@)=|1= 50 -expl=p/a |5 35

The integral form of the solution gives evidence that with z > that

. hy . . .
is 575>3, the spectral index increases by unity' a—o+1.
m,c

Actually with z> f the exponents exp{— f/£} and exp{—B/z} in
(20) are close to unity and with >0 we have
A
F(z)=—z"""1, (21)
o
For 0 <a <1 simultaneously with intensity decrease in the range
z> B, intensity increases in the vicinity of z~ §. Indeed integration

by parts of the solution (20) easily gives the first corrections for the
spectrum f(z)= Az~ % with small z<f

2
F(2)=Az"*|1+(1—a) % +(1— 02— )25 + ...
B B
Comparison with (21) shows that near z ~ f an increase of intensity
occurs. It is only natural because the number of photons is
conserved. Similar analysis can be carried out for a source
spectrum of the following form f(z)=A exp {-hv/kT,}. With large

. hv . . .
z> f3, that is e 12> 3, the resulting spectrum is an exponential
c
e

integral. Maximum intensity occurs in the vicinity of z~f. The
scattering does not influence the spectrum shape in the range z < 8.
In Sect. IV the dependence of escape radiation spectrum on the
spatial distribution of photon sources in the plasma cloud will be
discussed.

4. Emission Spectrum (General Case)

The stationary Kompaneets Eq. (13) that takes into account both
the recoil and Doppler effects, by the substitution of a new variable
N =x?exp(—x/2)W, is reduced to the well known equation

i:TV:/ + (‘%Jr “ W) W= —yf(x)exp(—x/2). (22)

X

The case where f(x)=0 has been investigated by Whittaker (see
for example Whittaker and Watson, 1963). Its solution are the
Whittaker functions W, g/4+,1/2(%) and M, g4 4.,1/2(x). They
have convenient integral representations. In Appendix B the exact
solution of the boundary problem is given for Eq. (22). It enables us
(using integral representations of the Whittaker functions) to
calculate numerically the spectrum of the radiation emerging from
an isothermal plasma cloud. The problem is reduced to the
calculation of one integral. This is a much easier procedure than the
direct numerical solution of Eq. (13). If f(x)=x,6(x —x,)and x, <1
the spectrum of the photons emerging from the cloud is described

1 Similar result has been obtained independently by A. F.
Illarionov

with the simple formula:

afe+3) [ x\3** '
F(x,x5)= w3 (x—o) when 0=x=x, -
F(x)=B(y,Xo)x exp(—X/2)W, (/4 + 1/ 2(X)
when x = x,,.
Where
B('y x)= yF((%+y)1/2—%) 94+t 2-3/2 _ 0‘(“+3)F(°‘)x3
’ T(9+4y)2)9+4y)+2 ~° I'Q0+4)

and I'(z) is the gamma function. The integral representation is given
as:

e

2
Y R
rG+n"*=3 o
t)(9/4+y)1/2+3/2

W, 01+ py12(%) =

dt. (24)

-exp(—t)(1+ <

For x=x, is follows from (23) and (24) that

_ ofo+3)xg
T T(20+4)

_ale43)xg oy ( t)"“’3
—F(2a+4)x exp ( x)gt“ exp(—1) 1+x de.

F (x) x""exp(—x)oj?t“"exp(—t)(x+t)"‘+3dt
0

(23a)

In the case of small x < 1 from this integral representation it is easy
to derive power law (16) describing the high frequency wing of the
spectrum, which is formed due to the Doppler effect. In the case
x> 1 we obtain Wien distribution

F,(x)=B(y, Xo)x* exp(—x) (23b)

. e . AL
When «+3 is a positive integer the expression (1+ —) isa
x
polynomial.
In such cases expressions for high-frequency wings in the
escaping radiation spectra are series with a finite number of terms :
when a=1, y=4

4
Fy(x,%,) =—5§§exp (—x) (1 +x+3x2 +2x3 + x4, 25)

When a=2, y=10

2
6 %) = o exp () (L x4t + e 4 o)
and so on.

The most interesting solution (25) for the case y=4 has been
found by Shapiro et al. (1976). The Wien law is involved only at a
later stage (Fig. 4): deviations from the power law spectrum are
noticeable only when x >3+4. When y <1 it is possible to obtain
the expansion (23) over a small parameter y and find

x3exp (—x)

[1+l3(§+x+x2).
2+%y(ln—+2,4)
Xo

Fy(0)=

With y—0 we get the Wien spectrum.

With small x,<1 using Table 1 it is easy to determine the
radiation spectrum for the most interesting range of spectral
indices 0.1=<a=<0.9 or the parameter 0.3=<y=<3.5. Until
X, <x<0,3 the spectrum obeys the power law and is given by
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Fig. 4. The effect of comptonization on the profile of the monochromatic line escaping from the spherical plasma cloud. The sources of
photons are distributed according to the law (8). The increase of x, = hv,/kT, from 1 (Fig. 4a) to 100 in (Fig. 4d) is accompanied by decreasing
Doppler-effect role and greater role of the recoil effect. The parameters on the top left hand corner of the drawings and the upper scale are
in dimensionless units. For illustration the parameters, corresponding to the specific case of a weakly ionized iron K,-line are shown to
the top right and on the lower scale of the drawings. Line splitting into a doublet with AE=13 ¢V is neglected

Table 1. Emission spectrum formed by the comptonization of the low frequency photons

o 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
N 0.31 0.64 0.99 1.36 1.75 2.16 2.59 3.04 3.5
V(x,y) 0.2 0.127 0.282 0.476 0.720 1.024 1.403 1.874 2.458 3.179
=F,(x)/x} 0.6 0.175 0.289 0.405 0.523 0.646 0.772 0.907 1.048 1.197
1.0 0.273 0.353 0.426 0.492 0.553 0.610 0.664 0.715 0.764
14 0.388 0.429 0.462 0.490 0.512 0.530 0.545 0.556 0.566
1.8 0.488 0.491 0.490 0.487 0.482 0.475 0.466 0.457 0.447
25 0.586 0.538 0.495 0.457 0423 0.392 0.363 0.337 0.312
30 0.591 0.523 0.465 0.415 0.372 0.334 0.301 0.271 0.245
40 0.494 0.419 0.357 0.305 0.262 0.226 0.195 0.169 0.147
d(y) 2.70 2.60 2.50 2.55 2.68 3.03 3.30 4.29 6.32
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Fig.5. The spectrum resulting from comptonization of low-frequency
photons (hv,=1073kT,) in a high temperature plasma clouds with
different parameters y (14)

formula (16). When x>5 the spectrum is described by the Wien
formula (23b). In the intermediate zone 0.3 < x < 5 the spectrum can
be derived from Table 1, where numerical values of V(x,y) are
shown. The function ¥(x,y) is determined in the following way:

F(x)=x5V(x,7)-

The general solution of Eq.(13) given in Appendix B also
allows the evolution of the spectrum with x,>1 or hv,>kT, to be
traced (Fig. 4). This solution takes into account both the recoil and
Doppler effects. Figure 9b shows the comparison of this general
solution with solution 20a, which neglects the Doppler-effect
frequency change. The plots in Figs. 4,8, 9 have been obtained in a
diffusion approximation, therefore they do not take into account
the direct escape of photons from the sources and are not adequate
to describe the spectrum of photons that underwent only few
scatterings in the cloud. When 7, > 1 the spectra calculated describe
well the line profile, and if 7, <5 the profiles of the lines are easily
calculated using the Monte-Carlo method (Pozdnyakov et al,
1979a).

5. General Case. An Arbitrary Radiation Spectrum of Sources

In the case of an arbitrary spectrum f(x) of low frequency photons
the spectrum of the escaping radiation may be represented as a
linear superposition

°1
F(6)= | — Gl Xp) [ (xo)dxo 26)
0 o

where the function G(x, x,) is given by formula (23) or (B5) and is a
response to the monochromatic spectrum of sources (the Green
function).

As an illustration let us consider a source spectrum of the type
f(x)=(a’x°/T'(6)x’ exp(—ax) where the coefficient a=(T,/T,)> 1
characterizes the ratio between the electron temperature and the
effective radiation temperature of the photon sources in a plasma
cloud. The number of photons is normalized to the unity

® d
Jf (x)?x =1. Substituting the simple formulae (16) for G(x, x,) in
)

(26) we obtain the resulting spectrum in the low frequency region
hv<kT,, ax<1. When a+3>§ the spectrum in the low frequency
zone does not change its slope

oo+ 3) 5

LR Sy sy S

If 2+ a> ¢ the intensity decreases. If 2 < § — o < 3 it increases. In the
case of the steep spectrum of the photon sources § >o + 3 the low
frequency tail of the emerging radiation spectrum is described by
the first formula (16) similar to that in the case where the spectrum
of the sources is a monochromatic line.

According to (23a) and (26) the high frequency part of the
spectrum hv> kT, is identical to the high frequency tail of the
monochromatic line emerging from the source

_ oo+ 3) (@) (e +9)
= reat aa

x€xXp (—X/2)W, (g/4 4 y1/2(X).

More interesting is the case when the photon sources have
blackbody spectrum

3

a? x
=315 explan—1

. T, . .
with T, < T, or a =?" > 1. Here and below {(z) is the Riemann zeta

function. Accordingr to (16) and (26) in the Rayleigh-Jeans part of
the emerging spectrum there is a decrease in both intensity

oo+ 3)a? 2

B =3 ernasd”

and radiation brightness temperature
(T.— T)/T,= =2/ + D (a+2)=—2/(y+2).
When y> 2 one has

6 KT,
AT|T,=———% 22,
r/ r 7'[2 mecz (TO + 3)
This effect exists also in a homogeneous medium. It has been
mentioned earlier by Zeldovich and Sunyaev (1969). In the case of
the initial Rayleigh-Jeans spectrum the intensity decreases as
exp {—y} where

t kT,
y=£m O'rNeCdt.
The high frequency hv> kT, part of the spectrum is similar to

the high frequency tail of the monochromatic line emerging from
the source (Fig. 6a).

_af(a+3) () (o +4)
YT 2IQa+4)((3)a"

xexp(— x/2)VVZ’(9/4+Y)(X) .
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logF. log F,

The Comparison with (23) shows that high frequency tails are
identical if

o (TG+a){B+a)\

The coefficient pisequal t04.2;3.7;3.2;2.7;2.4and 2.3 fora=4;3;
2; 1; % and § correspondingly.

6. The Luminosity of the Source
In Sect. II1.2 the convenient formula £ =

L, y-4
relates the luminosity of the sources of low frequency emission L,

is derived, that

-2 -

Fig. 6. The spectrum resulting from comptonization of low-
frequency photons in a high temperature plasma cloud. The
spectrum of the sources of low frequency photons is given as. a the
monochromatic line with hv, =10~ kT, (for comparison the curve
“p” is given, which was computed for the Planckian spectrum of the
sources with T,=+5 T, i.e. hvy =0, 1k T,. The curves are normalized to
the same number of photons; b the monochromatic line with
hvy=kT,; ¢ Planckian spectra with different ratios T,/T,; The
curves are normalized to the same number of photons

with the total luminosity of the plasma cloud L (the rate of the
energy loss by all the electrons in the cloud is equal to L—L).
Evidently the formula no longer holds when y—4. Let us find the
limits within which the formula is applied.

We have a simple analytic solution (25) for the case y=4 and it
is easy to integrate it over the frequency when x,<1.

L ,( 1
—~%|ln— +1,5).
Ly, * ( 1‘l"o - )

It is clear now that formula (18) is true until

LAY
y—4<5(nx0+ 5.
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Fig. 7. The ratio of the plasma cloud luminosity L to the luminosity
L, of sources of low frequency photons as a function of the
parameters of the cloud and the energy of low frequency photons.
The horizontal dashes in the right part of the drawing correspond
to the limit value of 3kT,/hv,
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Fig. 8. Influence of comptonization on the monochromatic line
profile with hv <k T, escaping from the spherical plasma cloud with
y=6. Only the Doppler change of photons frequency is taken into
account. Curve 4 corresponds to the central location of the photon
sources, 3 — distribution of the sources according to law (8), 2 —
uniform distribution of the sources over the cloud. For comparison
curve 1 illustrates the time evolution of the profile of the initially
monochromatic line in a homogeneous infinite medium. The
profile is given for the moment of time corresponding to
y=(T,/m,c*orN ct=0.1. All the curves are normalized to the
same number of photons

When x,=10"3 we have y>4.7. Figure 7 shows the dependence
L
L—(y) for three values of x, (see also Shapiro et al, 1976,

0
Pozdnyakov et al.,, 1976, 1977, 1979a).
When y—0 the spectrum of the resulting emission is close to the

. Ly T L .
Wien spectrum with hv=3kT, and - —3x}/3~ ! according to (23).
0
As the number of photons is constant and L,=N,hv,, then

L 3
L,.,=3NkT, and —= = —. If the sources of low frequency
o Xo
emission had a Planckian spectrum we would obtain L, =2.7N kT,
and L, /L,=T,/097T,.
In Table 1 the dependence d(y) is given which yields

L

= d a—1

L, ()x5

when 0=y <4 and for any x,<1. If x,<x, <1, 0<a<1 and the
flux density F (x,) at a given frequency x, and distance to the
source D are known, we can estimate its luminosity

200+3

L=4nDkT d
Dk LA T

Foeg)x] @7

V. Evolution of the Radiation Spectrum
1. Solution of the Problem by the Convolution Method

It was described in the Introduction how we can find the spectrum
of the radiation escaping from the plasma cloud knowing the
distribution P(¢) of the photons over the escape time and having the
solution of the Kompaneets equation for the infinite medium.

a) Doppler-effect

When kT,>hv the spectrum evolution is determined by the
Doppler-effect. The solution of the Kompaneets equation without
the terms nand n? which takes into account the recoil effect, is given
by formula (4). This solution shows how the line broadens with time
and how its center of gravity shifts in the high frequency direction.
This solution convolves easily with the asymptotics of the distri-
butions P(u) (Sect. IT). The convolution gives the profile of the line,
escaping from the plasma cloud if the photon sources in it emit
monochromatic line x,-0(x —x,), xo<1. Let us remind that

e

k . . . .
y=m > u. It is clear that the convolution of the solution (4) with

e

the asymptotics P(u) for small 1 <u <12 describes the line profile in
the vicinity of x,, the asymptotics with u> t3 determine the spectra
in the far wings of the line with x < x, and x> x,. It is easy to take or

estimate integrals like [ I,(x,y)P(y)dy for four basic types of the
0

P(u) asymptotics (Fig. 2). 2
. . n*u
When u> 13 the basic asymptotics is P~exp{— ——2—2}
3(10+%)
The convolution of this asymptotics with the solution (4) results in
power-law spectra like (16). The slope of the far wings of the line is
independent of the source distribution throughout the plasma
cloud. However the radiation intensity in the wings (their power) is
strongly dependent on the source distribution in the cloud. ‘
Comparison of the formulae (5), (5a) and (9) shows that the
wings are most powerful in the case where the source of the low
frequency photons is located in the centre of the cloud. In the case
of the uniform distribution of sources in a spherical cloud the wings
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2
Pil) _ 77 1o the case
Pyu) 3
where the sources are distributed according to the formula —2 sin =
0
and where the problem reduces to the solution of the stationary
P(u)
P(w)
than in the case of the central source.

As well as for the stationary equation solution the results can be
easily generalized for the case where sources of soft photons have
the Planckian spectrum with T, < T, and for any arbitrary sources
spectra with hv <kT,, for example for free-free emission of the same
plasma cloud. The short wave asymptotics weakly depend on the
spectrum of the sources of the low frequency photons. The X-ray

are approximately 3 times weaker |the ratio

equation we have =1. That is the wings are two times weaker

L . L
luminosity of the cloud (the ratio L—) strongly depends on the
0
spatial distribution of these sources. The asymptotic with u<t3

gives the shape of a monochromatic line in the vicinity of x,. In
Fig. 8 the results of the convolution operation are shown. The
shape of the curves is strongly dependent on the law of the source
distribution over the sphere. With the central source, the line has a
broad maximum: practically all the photons having experienced
u~12 scatterings. With a uniform distribution of the sources the
boundary effects become important: many photons have experi-
enced a small number of scatterings and practically have not
changed their frequency. The solution of the stationary equation
has the critical point with x=x,.

For comparison the time dependent solution (4) of
Kompaneet’s equation for homogeneous infinite medium is shown
in this figure. It takes into account only the line broadening due to
the Doppler effect, neglecting the effects connected with the
difference in time of the photon escape from the cloud. It is seen that
the escape time distribution of photons leads to the formation of
powerful wings of the line. According to solution (4) these wings are
exponentially weak.

b) Recoil Effect. Monochromatic Line Profile Evolution

The scatterings in the cold kT, =0 plasma lead, due to the recoil
effect, to an average increase of the photon wavelength, according
to the simple formula

A=lg+Au (28)

A
here A, is the initial length, —=
where 4, is the initial wavelength, 5-=7——

e
wavelength and u characterizes the number of scatterings.
To a first approximation one may consider the line to remain
monochromatics, shifting only along.the frequency axis. The
Kompaneets equation has been derived just to this approximation.

However in reality after the first scattering event the line broadens

is the Compton

2h . L
from 44 to 4, +;l—c (see the Figures and discussion in the paper by

e
Pozdnyakov et al., 1979a). As we shall demonstrate below the main
cause of the profile broadening is the dispersion in the time of
photon escape from the plasma cloud and consequently the
dispersion in the number of scatterings they underwent. Since the
function P(u) is known, it is easy to perform the convolution and
obtain the resulting spectrum of the line to a first approximation
(neglecting the line broadening in an individual scattering event). It
is sufficient for that purpose to use the relation (28) and to replace in

T T 1T 17 1T T [ 1T T T J [
log Fy

To=5

hvo= 6.4 keV
1 kTe=0
2 KT, = 0.064 keV
I KT, =064 keV
4 KTe =214 keV

1 kTe
2 X,
3 X
4 %o

a
-
wooo

wononon

y

52 6.0 6.8 7.6

Fig. 9. Effect of comptonization on the profile of the monochro-
matic line with hv, > kT, escaping from the plasma cloud. a The line
profile dependence on photon sources distribution in the cloud
with kT,=0 with the iron K, line as an example. Curve 1 — the
position of the monochromatic line ; 2 — the uniform distribution of
photon sources; 3 — distribution according to law (8), 4 — the
sources are concentrated in the center of the cloud, 5 — the sources
are at depth 7, in the semi-infinite medium. Vertical line 6 gives the
line position in the Kompaneets’ equation approximation for the
infinite homogeneous medium with (hvy/m,c*)oN,ct =0.64. b The
dependence of the profile on x,=hv,/kT,. The sources are distri-
buted according to (8)

0
A

(4

P(u) the dimensionless time u by

or, which is the same, by

mec®  my?

hv hvy

u=

The main parameter of the problem is

22— hy 12 /m o2
v=2,Tg=hvy15/m,c*.
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Indeed, the photons are distributed over the escape time according

to

dN,
du

=P(u).

The sources of photons emit the monochromatic line,

dN,
dz

=Ad(z—z,)

and the photons escape from the cloud with the spectrum:

N, g, _Ap_ 1)

F,=4z—2=4 =

dz du dz = z 29)

z oz,
Substituting dimensional variables we find

mec? _(mc*  mc? A (A=2\[ keV
F,=4 hv P( hv hvo)_AA_P( A )[cngkeV

(4

(4

The spectrum is normalized to the total number of photons from
the cloud detected per unit time

®F
[—dv=4
oV

photons }
cm?skeV |’

Using the formulae for P(u) from part I1 it is easy to determine the
line profile for any distribution of sources over the cloud. Some
interesting cases are shown in Fig. 9. In the case of a spherical cloud
with the source in the center it is clear from the formulae (5, 6) that
the maximum of the flux is at the wavelength A=A, +0.34_t2, the
far wings with 1—4,>0.34,72 and 1—1,<0.31,t3 are exponen-
tially weak and the line width is close to 44, ~ A t2.

If the sources are distributed homogeneously in the cloud the
boundary effects are important and many photons escape from the
cloud after only few scatterings. So, according to (5a), (7) and (29)
the high energy wing of the line is described by

Fy~[v(vo—v)]™ 12 (30)
and the low energy wing by
1 n2m,c? vy —v
F,~= — e 0 1
v vexp{ 3t2hv, v } 1)

In the case of a semi-infinite atmosphere with sources being in the
zone 0=t =<1, the high-frequency asymptotic of the profile coin-
cides with (30) and the low-frequency one stretches down to zero
frequency

v1/2

F~——>.
v (vo_v)3/2

(32)

Only the position of the intensity maximum depends on 7.

c¢) Causes of the Line Broadening

When kT,=0 the line broadens due to: 1. photon escape time
dispersion and 2. the line broadening in each scattering event. The
first cause as mentioned above leads to the line width of the order of
AL, ~134, the second only to 44, ~ 7,4, . Indeed, the change of the
wavelength at each event of scattering 0 < 44 <2/, may be larger or
smaller than the average value 4. We are to solve a typical diffusion
problem. Therefore the broadening of the line is proportional to the
square root of the number of scatterings, i.e.

Ay ~A ) un~tod,,  Ady> AL,

when 7, > 1. The Doppler effect becomes the third cause of the line
broadening

v 2kT\'?
=4 — = €
42 _clo i(mcz) Ao

e

for scattering on electrons with the finite temperature
0<KkT,<hv,.

When the number of scatterings is large the line broadens as the
square root of the number of scatterings (Pozdnyakov et al., 1979a)

1/2 kT 1/2
) zZ( "2) To-
m,c

(33)

KT,
Ady=2 1n2(u mc?
Doppler broadening may be neglected as compared to 41, when
(Pozdnyakov et al., 1979a)

2
kT, < (vo)

. 34
¢ 2myc? (34)

Let us remind that the recoil effect determines the shift of the
gravity center of the line when hv,>4kT,, ie. when x,>4.

How correct these estimates are is illustrated by Fig. 9b, where
the solutions of the stationary Kompaneets’ equation are com-
pared with Eq. (B5) and without the Doppler effect being taken into
account Eq. (20a). It is seen that when x, =100, the Doppler and
the recoil effects are approximately of the same importance in the
line broadening. This is in a good agreement with the estimate (34).
At the same time all the diagrams for x, >3 demonstrate the shift of
the gravity center of the line to the region of small x.

The spectrum of the lines mostly depends on the distributions of
photon sources over the plasma cloud, therefore we do not present
detailed plots. The profile strongly depends on the model and, vice
versa, observing the profiles of iron X-ray lines it is possible to
obtain information about the distribution of photon sources in the
plasma cloud.

Due to the existence of 44, and 44, the far wings of the line
must obey the power law. We took into account only the line
broadening due to dispersion in the escape times. Therefore in our
approximation the far wings of the line exponentially weak. The
real situation is similar to the case of the Voigt profile, where the
profile is exponential in the vicinity of the line center and obeys the
power law in the far wings. Comparison with Monte-Carlo
computations (Pozdnyakov et al., 1979a) shows that our approxi-
mation is valid only in the central parts of the line profile.

d) Recoil Effect. Evolution of the Power Spectrum

Any spectrum of the sources of photons can be represented as

f(v)=°§f(vo)a(v—vo)dvo. (35)

We have given above the solution of the monochromatic line
profile evolution problem (29). Using (29) the transformation (35)
allows the emission spectrum of the cloud to be obtained, the
spectrum of the sources of photons being arbitrary. Substituting
the solution (29) for 6(v —v,) in (35) and taking into account that for
the monochromatic line v <v,, is always the case for the approxima-
tion considered we find:

F,(2) =§}° fzo)P (; _ L)

Zo

dz,
Zp

11

ot
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For the power spectrum f(z,)= Az, * with

P(u)=Bexp { —pu}

the formula (36) is identical to the solution (20) of the stationary
equation. In the case of a central source of hard photons with the
expressions (5) and (6) substituted for P(u) in (36) it is evident that
the high frequency asymptotics of the spectrum z/ﬂ >1 is de-
termined completely by asymptotlcs P(u) with u<<2. It is natural
because photons with hvy/m,c*>1/t3 can remain the spectrum
range considered only if they have experienced much less than the
average number of scatterings in the source u< t3. The probability
of escape in this case is determined by the formula (6). Substituting
it into (36) we obtain

F (z)—élfz (— —u) _lu‘3/2 exp{—-%}du

When >0 this integral is reduced to the Whittaker function
(Gradstein and Ryzhik, 1971, formula 3.471.2), hence it follows that
in the high frequency limit

hV —2a+1/2 hv
F (z)=12 (m_cz) exp{ w2 - cz} .

e

(37

In the case of homogeneous distribution of the sources in the
cloud the probability of a photon undergoing only few scatterings
as compared with the average is determined by (7). We have

0 —-1/2-a
Zo
o~

F(Z):V—I(z z )1/2 z

Thus, the shape of the resulting spectrum depends crucially on
the distribution character of hard photon sources in the cloud
(Fig. 10). In the case of power law spectrum of the photon sources
F (z2)=Az"% 0>0 the spectrum of escaping photons has a break at
hvzm,c?/t}

a) a—a+% in the case of a homogeneous distribution of the
sources;

b) a—a+1 when the density of sources changes according to

—a—1/2

(38)

Ty . TT
the law —2 sin — (see the formula (21));
T T
c) the spectrum cuts off exponentially if the source is'situated in

the center of the cloud.

e) Solution of Comptonization Problem for Arbitrary Distribution
of Sources in a Finite Plasma Cloud

In Sect. II1.4 the solution of the stationary Kompaneets equation
was found for the spectrum of emission from an isothermal cloud
with a uniform density distribution of the plasma, the photon

sources being distributed according to the law 70 in ™, Only in
T To
this case P(u)=pf exp(— Bu). The solution is true for any relation

between hv and kT, and for any spectrum of the photon sources.

There is a challenge to obtain the full solution of the problem by
an arbitrary plasma density and sources distribution over the
volume of an isothermal cloud of an arbitrary geometry.

This can be done quite easily if one manages to separate the
spatial and temporal coordinates in the diffusion equation and find
the law of photon escape from the cloud P(t) Function P(u) can be
expanded in a series with the terms of

@

P(u)= Z e frexp {—fu}.

The convolution of P(u) with the solution of Kompaneets’
equation J (x,u) can be represented as a combination of solutions

07 - (a)

10

107

1072

10

0t

|
107

!
10

Fig. 10. Hard X-ray hv> kT, radiation spectrum evolution due to
comptonization. Only the recoil effect is taken into account. The
sources of photons in Fig. 10a and b have a power-law spectra. The
photon sources in Fig. 10c have the spectrum of bremsstrahlung of
an optically thin layer with T,> T,. Bold curves: the emission
spectra of the photon sources; solid: the spectrum of escaping radia-
tion from the cloud with uniformly distributed photon sources;
dashed: the same for the distribution according to law (8); dotted:
the same for the central location of the sources
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Fig. 11. Comparison of the observed Cyg X-1 radiation spectrum
(Voges et al, 1979) with the spectrum resulting from comp-
tonization of low frequency photons in the plasma cloud with
1o=>5 and kT,=27keV

of the stationary Eq. (13) related to different parameters f,
e}

F(x)= [ J(x,u) Y c, B exp { — Byu}du
0 k

= ; ¢ I4x).
Here
1=, | 1) exp {—
is the solution of the stationary Eq. (13) with = f,. This method
enables us to find the emission spectrum and the luminosity L of the

plasma cloud, with the given spectrum and luminosity L, of photon
sources.

Aé an example of this application let us find the luminosity of a
spherical plasma cloud with

kT,
y mczto<<

e

and a central source of photons with hv <kT,.
In the Appendix it is shown (A8) that if there is a central source,
then:

B=4/3
where A, meets the transcendental equation tg 4,7, = —324,.

The solution of this equation with 14> 1 is

n
ATo=nm— Y o
K=1

where

2n/37,

14+2/3ty+442_,/9° (39)

% do=0, k=1,23....

The normalization condition for P(u) gives an equation

©
sind,ty

3) ——=1.
ngl ,1"

The formula for P(u) allows the cloud luminosity to be derived
with Doppler effect being the main factor of photon energy change.
In this case for every f,, we have

L, _ 7 mc?

L_ = s Y= /3 n" 1,
(0] Yn— 4 k T;

SO

L S Y. Sind,r,

—L_0=3n=1yn_.4 )'

n

When t,> 1 Eq. (39) gives y,~n%y,. Note that
y, =mmc?/3(zy +2)%kT,

coincides with the definition of y (14). When y, >4, y,>4, y;>4,

and so on, ie. 'n_ ~1 when n>2 the expression for L/L,
Yn—
transforms into
L _ 3y, sini;t, 3 ‘i sin 4,7,
Ly 7—4 4 n=2
Y1 sin 4,7, 2 sind,1,
=3 ( — 1) +3
v1—4 A ,.;1 A
—14 _§.( - Ei) ~1F
y—4 2 y—
here

2n
o= ?/(‘co+§).

It is easy to show by the same method that the luminosity of a
spherical cloud uniformly filled with plasma and sources of
photons is given as

L 24 L6

— 1+ =~
L 472\ 7y, —4
° nz(yl—4)(1+ _9¢2) !
0
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In this case P(u) is respectively:

6 , < exp{—Bu}
P = — —_r: Tno .
) n? b nz:l 1 +%if
With the central source of photons the energy loss is ;’1 +14 r3 times
1 I 5

that in the case of uniform distribution of the sources. For y, =6
this ratio is equal to 2.2.

V. Astrophysical Applications
1. Bursters

The X-ray bursts observed have a steep front (typical rise time is
less than 1s). Then an exponential decrease of the intensity follows,
the typical decrease time being of the order 6-8s (Gursky et al,,
1976; Lewin and Joss, 1977). Canizares (1977) suggested that the
light curve of the burster reflects the law of the photon distribution
over their escape time ¢ from the cloud. He calculated P(z) for small
7, <10 using the Monte-Carlo method. The solution obtained in
Sect. IT (Fig. 1) gives the function P(f) shape similar to that
observed from many bursters. ’

Let us consider a spherical cloud of completely ionized plasma
of radius R having optical depth 7, with respect to Thomson
scattering.

The source of photons is in the center. Let us consider an
instantaneous flare of emission. Function P(t) (Fig. 1) allows us to
determine some parameters of the sources. According to (5) the
typical time of the intensity decrease exp { —t/t,} corresponds to
3 Rz,

—372/72 =
to=2315/m*0;N,C= i
i.e. with R given, it is easy to find 7, and the density of the plasma.
Similar estimates are valid for the hot layer in the semi-infinite
plane atmosphere with photon sources situated at optical depth z,,.
The more deep layer must have albedo 4=0.

The burster phenomenon is likely related to accretion onto
neutron stars. Unstable thermonuclear burning of helium and
carbon in the matter fallen onto the surface of a neutron star may
result in bursts (see the review and the references in the papers by
Lamb and Lamb, 1977; Joss, 1977). The layer where the burning
occurs must have a temperature of about 10° K. The typical depth
of a layer with such a temperature (the height of the homogeneous
atmosphere) is close to

H=2R*kT/GMm,=4R*kT/Rgm c*

T R \|M
=15{— | —— {2
3 (109 K) (10 km)( M ) o
Suppose that the energy release lasts less than 1 s, then for the typical

albedo of the low atmospheric layers being close to 1, the light
curve must be similar to that in Fig. 1.

o . 3 H .
The decay time in this case is ty=— —7,. Assuming H=15m
n’c

and t,=6s we find 7,=410° and g=m,1o/0,H=610°gcm™>
densities of this order of magnitude are expected to be in a zone of
unstable burning. When the temperature and the density have such
values, the electrons are not yet degenerate and the scattering gives
the main contribution to the opacity, i.e. determines the escape time
and the type of function P(t). When T<5108K a considerable
contribution to the opacity is from free-free processes. It is possible
to take into account degeneration of electrons: nevertheless it is

clear that the shape of the curve will be similar to that in Fig. 1.
Important is only the fact that a small fraction of the energy
released enters the zone with 7> 1,, heats it and leads to the
production of low frequency photons. Then these photons are
comptonized in hot layer.

2. Temperature of the Plasma in Cyg X-1

There is a number of models explaining the origin of the hard X-ray
flux from Cyg X-1. Shapiro et al. (1976) consider it as a manifes-
tation of a two-temperature accretion disk. Shakura and Sunyaev
(1976) consider it to be the emission from hot zones, forming due to
thermal and secular instabilities in the disk. Thorne and Price
(1976), Bisnovatyi-Kogan and Blinnikov (1977) believe it to be the
emission from the hot corona above the disk. The authors of all
these models are unanimous in the opinion that the spectrum is
formed due to comptonization of low frequency photons on hot
electrons (Eardley et al.,, 1978).

The formulae obtained in Sect. 1I1.4 allow the temperature and
the scattering optical depth of the hot plasma in the region of the
main energy release in Cyg X-1 to be found.

The spectrum of the emission escaping the cloud is described by
(23) and in the hard X-ray region v>7V, depends only on one
parameter

y=n’m.?/3(t, +3)*kT,.

Figure 11 shows experimental data on Cyg X-1, obtained by
Voges et al. (1979), see also Sunyaev and Triimper, 1979.

These are compared with the calculations made using the
formula (23a) with y=2.0 and kT, =27 keV (the shape of the curve
F (x)is determined completely by y): if we shift the curve along the
frequency axis we get it matched with the experimental points,
hence the correspondence between x and hv and the value of kT, are
obtained. Although the emission spectrum extends up to 150keV,
the radiation may be emitted by a plasma cloud with the
temperature kT,=27keV and 7,=5, a=0.56.

3. X-ray Radiation of the Nuclei of Galaxies and Quasars

If X-ray emission spectrum of galactic nuclei and quasars is
actually formed due to comptonization of the low-frequency
radiation scattered on hot electrons, the method described in the
previous section enables us to find the temperature and the optical
depth of the plasma clouds where the spectrum forms.

Using the formulae in Sect. III and Table 1 it is easy to find the
F (x) for a wide range of y-values and spectral indices. The relation
between the low frequency source luminosity and the X-ray
luminosity obtained in Sect. IIIg can be useful for constructing
detailed models.
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Appendix A
Photon Distribution over the Time of Escape from a Spherical Plasma
Cloud

A spherical plasma cloud with distributed photon sources is
considered. The Thomson scattering is the main mechanism of
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photon interaction with the plasma. The equation of photon
diffusion in the cloud is

oJ 140, 0]
2 - 1
ot r?or (r b 6r) (A1)
o L C . .
where the diffusion coefficient is D= ———, the average intensity
20N (1)

of the emission is J(r,t). In the homogeneous plasma
o] 10/ ,d]

—1- Y A2
ou 312 61:( 61:) (A-2)

Here u=co;N,t is the dimensionless time 7, is the optical distance
to the centre of the cloud.

The boundary condition
oJ

__QJ
6+

=0 (A.3)
=10
shows that there is no photon flux from the outside onto the
boundary surface of the cloud. 7, =0, N R characterizes the radius
of the spherical cloud.

The initial condition

J|u=0=f(1)

shows that at the time equal to zero the sources distributed over the
cloud according to the law f(t) were turned on. The solution of the
problem with general initial conditions (A.4) can be obtained as a
linear superposition of the solutions with a condition

é(t—a)

(A4)

J|u=0=

Condition (A.5) shows that at the time ¢t =0 there was a source of
photons turned on a sphere with the radius and with the power 4.
In the limit a—0 it is possible to obtain the solution for a point
source in the center of the sphere.

The solution of the mixed boundary problem (A.2, A.3, A.5) can
be obtained by separation of variables method in the form
(Petrovsky, 1953)

@

)= E 8, sin,t p{_liu},

1
ﬂ,.——zmsm /lna, (A 6)
I =l(‘f +_ﬁ_:1)10_) .
n— 2{%0 (_210_1)2_'_(/1"10)2 ?
AT
tg A, 1o =—1"2
1-31,

Below we shall discuss the case of the great optical depth t,> 1 and
u>1. For 1,>1

J(z u)—L i sin A asin A t,ex {— Aath (A7)
™ 2nat & " wo EXP 3 ) '
tg A 1y=—24,. (A8)
For a=0
1 2, . Au
J(tgs 1) =5 ; 2,810 AT, €Xp { -3 } (A9)
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. . A 3
The series obtained converge fast when % >1 or u» Frg and

slowly when u<t2. When u>%r?, the series (A.7) and (A.9) are

described accurately enough by the first term. When a <1 we have

n?u
J(tg, u)= exp{ ?-2—} (A.10)
To

To obtain the asymptotic behaviour with u <73 let us construct
the solution of the problem (A.2, A.3, A.5) using the reflection

method. Let us write down the final expression (Sunyaev and
Titarchuk, 1978)

1 3\12
4ntya (nu)
—a)? 2
) [exp(— 3(1:04u a) ) B exp(— 3(1:1—:;(1) )

2 _ 3(To+a+’7)2)
—h b[ (exp( -

_ 2
—exp ( _ 3@ 4Z+'1)

Here the terms in brackets determine the asymptotics with u <t2.

J(to,4)=

)) exp(— hn)dr]} +R(tq, a,u). (A.11)

R(z4,a,u) is the remainder of the series. When a=0 we have

313)
4u

© 2
—h {exp ( - x%li) exp(— hn)dn) +R(z,0,u).

0

h
Jo(to, )= p— (CXP ( -
0

Hence it is not difficult to obtain that, with 1 <u <12,

3 1/2\3 3,':2
Jo(Tor W)~ (%(n_u) ) exp{—4—lf}.

From the astrophysical point of view, it would be interesting to
solve the problem of the time of photon escape from a spherical
plasma cloud, uniformly filled with sources of photons.

The mathematic problem is formulated as (A.2), the initial
condition J(z,0)=1 being added. The solution is represented by a
series

4 = exp{—Au3) .
Moo= 5 LT

0n=1

Hence it is easy to obtain the asymptotics with 1 <u <13

2 2 (um\Y/?
Y (l“a(‘s‘) )

and u> 12

4 n’u
Jrgu=-—ce —.
o= 5w 5]
To find the escape time distribution function of the escape time

distribution P(u) of photons we have to normalize the function

obtained J(zo,u) so that | Puydu=1,
o .

P(u)= —
j J(to, w)du
0

J(to,1).
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The normalization is made in the following way. Let J(t,u) be
the solution of the following combined problem

aJ 10 ,0
== <1< 0 =12
36u 47, 0=1t=1t,, u>0, = Brr pe
aJ

—+3J =0, u>0,

o,

Jy=o=f(1)0=7=1,.
Let us integrate the first equation over a sphere of the radius 7.

| 4Jdv=3 § %dv.

b, ».,0
Hence using the Gauss-Ostrogradsky formula we obtain
oJ

aJ
[z dS,=3 Djﬁa_udV

or

0
4ntd o

oJ
=3[ Zay
ot 3 D{o ou '’

—4nt22J (g, u)=3 | g% dv.

De,

Integrating this relation over u we obtain

I=TJ(ro,u)du= Lz _[ f(r)dv.
0

2nty D,

(1)

For instance, for fy(1)=
Jol) 472

and f(r)=1 we have, respectively

2
I,=1/2n23, I,= —;)—0. Taking into account the normalization
obtained, let us write down the formulae for P(u) for two interesting
cases:
1. the central source — Py(u)
2. the sphere uniformly filled with sources — P, (u):

© AZ
Pow)= Y A,sinA,toexp { - ’éu};
n=1

2 2 exp{—Aiu/3}
Pl=3 L =i

on=1

Comparison of P(u) obtained and functions P(u) for the radius

dependent absorption coefficients a,(r) ~7~", a(r) ~exp { _T ;’o}

indicates that the difference of their asymptotic with u>t3 and
u<t) is negligible. These asymptotics have in common an
exponential cut off by u> 12 with approximately the same exponen-
tial factor depending on the dimensions of the cloud, and an
exponential rise by u <t} for the source inside the cloud.

Appendix B
Solution of the Stationary Kompaneets Equation

The problem of a spectrum forming in a spherical cloud with the
distribution of photon, corresponding to some of the eigenfunc-
tions in the diffusion problem reduces to finding the solution of the
stationary Kompaneets Eq. (13) finite on the semiaxis x >0. To find
a complete solution of the boundary problem one should only find
a solution generated by the monochromatic line at a frequency x,,.

73(x—x)

In this case f(x) is equal to 3

The differential operator of Eq. (13) is to be reduced to the self-
conjugate form. For this purpose we multiply Eq.(13) by the
integrating factor M(x)=exp {x}

_ PO(x —X,)
X

0

¢*(B.1)

d( , . dn 2
— —4x3e*n=
Ix (x e dx) (yx x°)e*n

The Green function for the self-conjugate problem is (see
Petrovsky, 1953)

r

1
———X,(xo)X;(x), 0=x=x,
Gl xg) = O (82)
W)—Xl(xo)Xz(x), XeSx<00.

X ,(x) and X ,(x) fit Eq. (13) with f(x)=0 and the condition of the
finite solution with x—0 and x— co respectively. Here A(0) is the
Wronski determinant for X ;(x) and X ,(x) calculated in the point
x=0 and p(0) is the value of p(x)=x*e* for x=0. The solution of
homogeneous Eq.(13) is represented by the Whitteker function
(Whitteker and Watson, 1963)

X, (x)=x"2exp(—x/2JM,, o4+ 1/ 2(%),

X,(x)=x" Zexp(— x/2)W2,(9/4+ ni/ ).

Here M, /44,12 and W, g4, 1,2 are Whitteker functions
approaching zero with x—0, co correspondingly.

M, (o/4.4 yy1/2(X) =€Xp (— x/2)x 2+ O1+N1E

@((9/4 + 7)1/2 _%’ 1 + (9 + 4)})1/2) x) )
W, (9/4+ 1/ 2(X) 1 given by the formula (24). ¢(a, B, x) is a degenerate

hypergeometric function. Using representations (B.3) and (24) we
obtain

1 T (o)
A(QPO)  I'Cu+4)

(B.3)

(B.4)

Let us write down the final formula for the spectral density of the
emission escaping the cloud and being a response to the monochro-
matic line
@+ 3 (a+1) exp (x/2)

I'o+4) x3
- (o, 200+ 4, x)x3 *%exp (— x)

F (x)=x3n(x,x,)=

L I/Vz’(9/4+y)1/2(x0) When Oéx §x09

_(a+3)(a+1)
Fo="Foa

x5 !xexp(—x/2)

(B.5)

oo, 2004+ 4, x,)

‘W, 9/a+yp12(x) when x,=x<o0.

Here n(x, x,) is the finite solution of Eq. (B.1), a=(9/4+7y)*/2—3.
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