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ABSTRACT

A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the
Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma
containing high-energy photons. These are coupled nonlinear integro-differential equations. The collision
kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and
creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which
are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equi-
librium solution is expressed analytically in terms of the initial conditions. For two specific cases, for
which the photon and the pair spectra are initially constant or have a power-law distribution within the
given limits, the time evolution of the plasma is analyzed using the new method. The final spectra are
found to be in a good agreement with the analytical solutions. The new algorithm is faster than the
Monte Carlo scheme based on uniform sampling and more flexible than the numerical methods used in
the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astro-
physical applications of this technique are discussed.

Subject headings: elementary particles — plasmas — radiation mechanisms: nonthermal — relativity

1. INTRODUCTION

Nonthermal emission of high-energy radiation from a
variety of compact astrophysical objects, e.g., y-ray—burst
sources (Mészaros & Rees 1993a, 1993b), pulsars (Chen &
Ruderman 1993), active galactic nuclei (AGN; Lightman &
Zdziarski 1987; Svensson 1994; and Padovani 1996), and
jets in the AGN (Sikora 1994) seem to indicate the presence
of a relativistic electron-positron pair plasma in the dense
radiation fields of those sources. Such plasmas may exist
also in the accretion disk coronas of the Galactic X-ray
binaries (Sunyaeyv et al. 1992), the ergospheres of Kerr black
holes (Piran & Shaham 1977), and the black hole accretion
disks (Tanaka & Kusunose 1985; Bjornsson & Svensson
1992). It is conceivable that the pair plasma in some of these
sources is in thermodynamic equilibrium with itself and
probably in equilibrium with the radiation. However, it is
more plausible that many of them may consist of nonequi-
librium pair plasmas (Coppi & Blandford 1990, hereafter
CB90; Zdziarski 1988, 1989). Many of the previous papers
on this topic have concentrated on the properties of a rela-
tivistic pair plasma in thermal equilibrium (e.g., Bisnovatyi-
Kogan, Zeldovich, & Sunyaev 1971; Lightman & Band
1981; Lightman 1981, 1982: Svensson 1982b, hereafter
S82b; Zdziarski 1985). Examples of the time evolution of a
thermal pair plasma, taking into account the finite-medium
radiative transfer effects can be found in Guilbert & Stepney
(1985), Kusunose (1987), and Carrigan & Katz (1992). There
are not many papers that deal with the evolution of a non-
equilibrium pair plasma in detail; some examples can be
found in Lightman & Zdziarski (1987), Svensson (1987),
Zdziarski, Coppi, & Lamb (1990), and Coppi (1992, here-
after C92).

! Dr Shaham passed away during the course of this work.
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These investigations are generally based on the Monte
Carlo (MC) methods or on solving the Boltzmann equa-
tions (kinetic theory approach). In a simple MC method
based on uniform sampling (Pozdnyakov, Sobol, &
Sunyaev 1977), individual particles are followed as they
undergo interactions in the source. In this method, it is
usually easy to take into account the spatial inhomoge-
neities and radiative transfer effects well. But it typically
suffers from relatively poor photon statistics at higher ener-
gies and does not lend itself to time evolution calculations
involving broadband spectra. For examples, of such MC
simulations, see Novikov & Stern (1986). In the kinetic
theory approach, the system is represented by the photon
and particle distribution functions which are discretized in
energy as well as the spatial coordinates, and the time evol-
ution is determined by solving the Boltzmann equations
numerically. In general, it is very difficult to solve the
resulting integro-differential equations. Moreover, they are
usually “stiff” (i.e., there are very different timescales in the
problem). The principal advantage of this approach is that
it gives good photon statistics at higher energies. Some
examples of the kinetic theory approach can be found in
C92, Ghisellini (1987), Svensson (1987), and Fabian et al.
(1986).

There have been some attempts to improve the photon
statistics in the conventional MC schemes which go by the
name phase-space density (PSD) array representation. In
this approach, the system is represented by the discretized
distribution functions (as in the kinetic theory approach),
but the particle or photon transitions between the energy
bins is simulated using the MC method and the interaction
between the spatial cells is modeled with the aid of the
escape probabilities. So far this approach has been used to
model only homogeneous and spherically symmetric
systems (e.g., Stern 1985). Another recent variant of the MC
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method is based on the large-particle (LP) representation,
which is decribed in detail by Stern et al. (1995). In this
scheme, the system is represented by an array of “large
particles,” each of which corresponds to a group of real
particles sharing the same physical parameters (i.e., particle
type, position, momentum, and energy). It is more flexible
than the PSD approach in the sense that each LP is tagged
with a statistical weight, which is proportional to the
number of real particles represented by that LP. For
example, this weight can be assigned based on the total
energy carried by each LP. In many nonequilibrium
systems of interest in astrophysics, the number of particles
in the low-energy range is typically several orders of magni-
tude larger than that of the particles in the high-energy
range. Therefore, the efficiency of the method may be
improved by assigning lower statistical weight to the low-
energy LPs. Intuitively this approach makes sense, but
there is no general proof for its validity or effectiveness
(except for the numerical experiments presented by Stern et
al. 1995). Besides, the statistical weights are rather ad hoc.

From the preceding discussion, it is clear that the main
problem in the analysis of nonequilibrium pair plasmas is
the computational difficulty. The principal aim of this paper
is to present a new method for solving the kinetic equations
based on an adaptive MC sampling scheme. It is faster than
the conventional MC method (based on uniform sampling)
and is more flexible (and in some cases, faster) than the
numerical methods previously used. Our method resembles
the LP method described above, in the usage of the sta-
tistical weights, but it is much more rigorous. Moreover, it
can accommodate anisotropic distributions with greater
ease.

In a relativistic plasma containing arbitrary densities of
pairs and the high-energy photons, the collision cross sec-
tions for various microscopic processes depend on the
energy. One cannot use, for example, the simple Thomson
cross section as one can do in the nonrelativistic case. In
addition, there is a creation and annihilation of the pairs
and photons that alter the densities. Therefore we have to
follow the time evolution of the number density as well as
the spectrum of each species. Besides, the problem is inher-
ently nonlinear due to the form of the collision kernels in
the Boltzmann equations. It is possible to write all the colli-
sion kernels as multidimensional integrals. This reduces the
problem of solving the coupled Boltzmann equations for
the photons and the pairs into a purely computational task
of evaluating many of these integrals, after each time step,
quickly and efficiently. This way of formulating the problem
of kinetic theory is more flexible in accommodating any
kind of distribution functions. We have developed a new
algorithm, based on Monte Carlo sampling, for computing
such integrals. The functional form of the integrands is not
assumed a priori. Also, no constraint is placed on the shape
of the integration region. Usually such integrals are evalu-
ated either numerically (by using an equally spaced discrete
grid) or through a Monte Carlo sampling technique. In
order to make the former method more efficient, we have to
choose the shape of the discrete mesh depending on the
form of the integrand. This takes away the flexibility from
the method (i.e., the algorithm will depend on the form of
the integrand). The latter method, based on uniform sam-
pling throughout the integration region, is widely used in
astrophysics. It is possible to speed up the computation in
this method by sampling selectively, i.e., sampling more fre-
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quently in those domains where the integrand is larger. This
scheme is known as the importance sampling method or the
adaptive Monte Carlo method. There is an algorithm, orig-
inally due to Lepage (1978), which implements this.
However, it is not well suited for the type of integrals that
arise in the present context. We have developed a new algo-
rithm to implement the adaptive Monte Carlo method
which is very efficient (see below).

In the next section we define various quantities, explain
the basic pair plasma model we use, and write down the
general kinetic equations. In §§ 3 and 4 we give the integral
expressions for various collision kernels, which are valid for
all energies. These collision integrals are cast in a form that
is well suited for the Monte Carlo integration. In § 5 we
describe how we integrate the Boltzmann equations
numerically. There we explain the adaptive Monte Carlo
algorithm we use. In § 6 we express the final equilibrium
state of an homogeneous and isotropic plasma (with no
escape of particles or photons) analytically in terms of the
initial conditions. Then we apply our time evolution code to
two specific examples of nonequilibrium configurations and
compare the final results with the corresponding analytical
solutions. These examples serve as a test for the overall
formalism presented in this paper. Finally, in § 7, we sum-
marize this work and discuss some astrophysical applica-
tions.

2. MODEL, DEFINITIONS, AND THE NOTATION

We consider a neutral, stationary, and unmagnetized pair
plasma which is nonthermal (i.e., not in equilibrium). We
assume that the plasma is homogeneous and isotropic. If
the plasma is in a moving source we must interpret all the
physical quantities given below as the comoving-frame
quantities. The number densities (i.e., the number of par-
ticles per unit volume) of the electrons, positrons, photons,
and protons are given by n_, n,, n,, and n,, respectively
(n_ =n, + n,). Throughout this paper we express the
momentum and energy in units of mc and mc?, respectively.
Here m is the electron rest mass and c is the speed of light in
free space. Therefore the momenta and the energies of the
particles, as well as the photons, are represented by dimen-
sionless numbers everywhere. For the models we consider
here the protons can be assumed to be at rest. We assume
that the state of the plasma is completely described by the
Lorentz invariant distribution functions f. (x, p) and f,(x, p),
for positrons, electrons, and photons, respectively. Here x, p
represent the position and the momentum four-vectors,
respectively, and x, p represent the corresponding three-
vectors. Our choice of the metric is such that p> = 1 for
electrons. In the case of photons we have p = €(1, k), where €
is the photon energy and k is a unit vector in the direction
of its three-momentum. Similarly, p = y(1, B) for the pairs.
Here y is the Lorentz factor and p is the velocity in units of
¢. We denote the magnitude of § by f. The number density
of the particles of type i with a momentum p is given by
f:d’p. We define the total densities of various species to be
n; = | fi(p)d>p, where the integration extends over all values
of the momenta. Because of the isotropy, we have
d*p = 4ne? de in the case of photons and d*p = 4npy? dy for
the pairs.

Since we assume that the plasma is homogeneous and
istropic, various distribution functions depend only on time
and the energy (or the magnitude of the momentum). We
define the spectral functions for photons, positrons, and
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electrons to be
4nﬁy

2
FO="""1@ and F.0)="""1.6), (1)

respectively. The time dependence of these functlons is not
shown explicitly. The spectral functions are normalized so
that

Imder(e)=1 and rdyFi(y)= 1. (2
(4] 1

We see that the number of photons of energy e per unit
volume and unit energy is given by n,F (e). We will assume
that the electrons and the positrons have the same spectral
functions, i.e., F_(y) = F ,(y) for all values of y, which we
denote by F (y).

The equilibrium spectral functions, which are indepen-
dent of time, are given by

Fy(€) = < 23
1) = 230" exp (/) — 1 @3

1 2
F6) = g e B e (10). @9

Equation (2.3) comes from the Planck function for the
photons, where { is the Riemann zeta function and
{(3) = 1.202. In that equation we have used the equilibrium
density of photons

n, = 167:5(3)(’"76 @)3 : 2.5)

where h is the Planck’s constant. Equation (2.4) is the rela-
tivistic Maxwell-Boltzmann distribution for electrons and
K, is the second-order modified Bessel function of the
second kind. In all these equations ® = kp T/mc? is the
dimensionless temperature of the plasma, where T is
the temperature and kg is the Boltzmann constant.

To study the time evolution of this system we should
proceed from the relativistic Boltzmann equations for the
pairs and photons. In the latter case it is the same as the
radiative transfer equation. The Boltzmann equation (see
e.g., de Groot, van Leeuwen, & van Weert 1980) for the
particles of type i, described by f;, which takes into account
the collisions with the particles of type j, described by f}, is
given by

"0, fi(x, p)
d3
=ZJ?%MMWFMW¢%%WmM%m%m
(2.6)

Here 0, is the partial derivative with respect to x* and the
summation over u is implied. The summation for j extends
over all relevant processes. Here ¢° is the energy component
of the four-vector ¢g. Using the initial and the final momenta
to designate the particles, the collision processes can be
represented as p + g << p’ + ¢'. The solid angle around one
of the outgoing particles is dQ'. Finally, g;; is the cross
section for the process and F is the invariant flux factor. It is
necessary to remark that in the present form, the above
equation cannot account for the quantum mechanical Bose
enhancement and Fermi blocking effects, respectively, for
the photons and pairs. In order to do so, we need to take
into account the particle occupation numbers in the phase
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space. For photons, this is given by

_1(h n,F(€)
gy(e>—2< >ﬁ() (mc> @)

which in the equilibrium case reduces to 1 /[exp (/@) — 1],
as expected. If we are considering a process in which two
particles of momenta p and g produce a photon of momen-
tum p, then we should make the replacement
fip)fi@ - fi(p) f(@[1 + g,(p)] in the Boltzmann equation.
These effects play a significant role only when g, ~ 1 or
n,e *F.(€) ~ 1.76 x 10°° cm™>. For the densities and the
energles of interest here, these quantum mechanical effects
can be neglected. An analogous remark applies to the case
of the pairs. Such induced effects in a relativistic thermal
plasma at high temperatures and densities have been con-
sidered by many authors in the past (e.g., Ramaty, McKin-
ley, & Jones 1982).

The Boltzmann equations reduce to simple rate equa-
tions in the comoving frame as a result of the homogeneity
and isotropy of the plasma. We denote the comoving time
coordinate by t. The rate equations are given by

tf;=z [n;

where i stands for either photons or electrons and g labels
the binary collision process (Compton scattering, pair pro-
cesses, bremsstrahlung, or Coulomb collisions). The sum-
mation runs over all those processes that involve a particle
of type i among the products of the collision. Here #; is the
emission coefficient for the production of a particle of type i
with momentum p (or scattering of such a particle into that
final momentum state) and y; is the corresponding absorp-
tion coefficient. Notice that f;, 5;, and y; depend only on the
energy of the particles and time. In order to obtain the
collision kernels, #; and x;, we require the binary reaction
rates in a relativistic plasma (e.g., de Groot et al. 1980;
Baring 1987a). Using the appropriate reaction rates we can
write

—fixidy 2.8

n:(p) = Z

c do,
dF,, 7, “im 2.9)
zm1+&mL e

dp’

where d,,, = 1 for identical colliding particles (i.e., [ = m)
and is zero otherwise. The summation in this equation is
over those incident states (labeled by ! and m) which result
in a final state labeled by i. Furthermore, do,,/dP is the
differential cross section for the process, whereas dP is a
shorthand for d®p which is defined above. The four-
momenta of the colhdlng particles are given by p, = (p, p))
(for k =1, m) and the four-momentum of one of the out-
going particles is p. The product of the phase-space densities
of the colliding particles dF,,, is given by

dF,, = ]_[ fip)dp; (2.10)

We have d’p, = €’ de,dQ for the photons and d°p
B,y? dQ,dy, for the pairs. The kinematic factor 37,," for
binary collisions (see, €.g., Landau & Lifshitz 1975) is given
by

= (ul um)ﬂrel(pl’ pm) (211)

where u; = p,/p, and ﬁ,el is the relative velocity of the collid-
ing particles in units of c. If at least one of the colliding
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particles is a photon we will have .., = 1. Otherwise

[(B. — Bn)* — (B x B.)"1"
1- ﬁl : ﬁm

The integration in equation (2.9) is over a region U of the
phase space of the colliding particles, which is specified by
the energy-momentum conservation. It depends on the
energy p° of the final state. Now we specialize to the case of
a process for which the reacting particles are labeled by
I =1 and m = 2. By using equation (2.1) we can express
dF,, in terms of the spectral functions and the densities.
This gives the following final expression for the emission
coefficient (i.e., the production rate) for electrons or
photons:

Breiprs P) = (2.12)

cnyn, 2 . do
6201 1 5,5 Jy L1 LFAHE 07

(2.13)

Now we define the total reaction rate between two par-
ticles of energies €, and €, to be

n(e) =

cnyn, !

2(1 4 612) J-s

where u is the cosine of the angle between the momenta of
the colliding particles and o, is the total cross section for
the process considered (integrated over the entire phase
space of the emitted particle). Clearly &, as well o,
depend only on €, €,, and u. Now it is possible to express
the emission coefficient in terms of the total reaction rate as

R(ela 62) = d:u 9'—12 Ootal » (2'14)

2
n(e) = l_[1 [de; Fj(€)]R(€, €2)P(€y, €25 €), (2.15)
=
where the integration is over all values of €; and €, without
any restriction (in contrast to eq. [2.13]). In the above equa-
tion, P is the probability, integrated over all incident and
emergent angles of the particles, for emitting a particle of
energy ¢, from a collision between the particles of energies
€, and ,. It is normalized so that | deP(e, €, ; €) = 1, where
the integration is over all values of e. Equation (2.15) has
been used by several previous authors (e.g., CB90).
We can obtain the absorption coefficient from equation
(2.9) with only minor changes. For the absorption of the
particles of type i with a momentum p; we find that

c dF;
F i Orotal - 2.16
L dPl ij Ytotal ( )
Here o, is the total scattering cross section for the
process. The summation extends over all relevant processes.
For a binary process, involving the particles of type i and
type j, the absorption coefficient can be written in terms of
the spectral functions as follows:

f@np:) = Z 146,

Cn;
xil€) = m Ldﬁj dQ;F(€)ZF;0orm » (2.17)
ij

where the integration region U is determined by the energy-
momentum conservation. This way of writing the emission
and absorption coefficients is very convenient for Monte
Carlo evaluation we describe below.

We remark that in equations (2.13)2.17) we have used €
in a generic way and it has to be replaced by y whenever it
refers to the pairs. Physically, 4rne?y(e) is the rate at which
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photons of energy € are emitted per unit volume and unit
energy due to the process under consideration; similarly,
4nBy>n(y) gives the corresponding electrion emission rate
(recall that we express energy in units of mc?). Electron and
photon absorption rates are obtained in a similar way. If
the size of the system is [, the optical depth 7 and the absorp-
tion coefficient are related by t = Iy/c. Equations (2.13) and
(2.17) constitute the point of departure for the following two
sections where we obtain the emission and the absorption
coefficients for the photon and the pair kinetic equations.
We remark here that in the case of Compton scattering of
the photons as well as the pairs, the collision integrals only
give the rate at which the spectrum changes at a given
energy and do not imply any change in the total numbers of
the particles.

3. COLLISION INTEGRALS FOR PHOTONS

The preceding discussion has been very general. We now
obtain the integral expressions for the photon emission
coefficients due to Compton scattering, two-photon pair
annihilation, and bremsstrahlung and the absorption coeffi-
cients due to Compton scattering and the pair creation. In
this paper we do not consider the double-Compton emis-
sion or the three-photon emission through pair annihi-
lation. Also we do not consider the effect of photon
absorption through the inverse-bremsstrahlung (free-free
absorption).

3.1. Compton Scattering of Photons

The problem of Comptonization in astrophysics has been
analyzed extensively by many previous authors (e.g.,
Blumenthal & Gould 1970; Rybicki & Lightman 1979; and
more recently by CB90). Here we obtain an integral expres-
sion which is valid at all energies of the incident electrons
and photons. Throughout this paper we call the comoving
frame of the plasma the C frame. Let p and p, be the
momenta of the incident electron and photon, respectively,
in the C frame. Let g and g, be the corresponding momenta
after the scattering. Recall that p> =1 and p? =0. We
require the final photon energy to be €. Hence we set g, =
€(1, k), where k is the directional unit vector. We write
p =71, p) and p, = €,(1, k,). Here y is the Lorentz factor of
the incident electron, g is its three-velocity in units of ¢, €, is
the energy of the incident photon, and k, is its directional
unit vector. Using the fact that (p + p; — q,)* =¢*> =1 we
obtain the well-known relation between the initial and the
final photon energies, viz., € = é(e;) or €; = €(€), where

e=-Mr  and & = ave

ay + be,

Here a=1—f-k, a,=1—pB-k,, and b=1—cos 6,
while cos 0 = k - k, gives the cosine of the photon scat-
tering angle in the C frame. Let 4 = cos 6 and the cosine of
the angle between f and k is defined to be u'. The angle
between the planes formed by the pairs of vectors (k, k) and
(k, B) is defined to be ¢. It is easy to show (see the Appendix
for further details) using equation (2.13) that the Compton
emissivity for photons is given by

m . (3.1)

_+n, 2 ’ € A
W L (dy dudy’ dP)F (y)F y(61)<2WC) ;

(3.2)

n(e) =
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where A = &2 — ¢ sin? @ + 1 and & = a,y/(a,y — be), while
0’ is the photon scattering angle in the rest frame of the
incident electron and r, is the classical radius of an electron.
The region of integration U is defined by 7., <7 < Vimaxo
—1<u ¢ <1, and 0 < ¢ < 27 subject to the condition
that € < €; < €;1max- Here ypin and y,.,, are the limiting
electron or positron energies in the plasma. Similarly €,
and €,,,,, are the limiting photon energies.

Now we obtain the corresponding “absorption” coeffi-
cient (as stated before, this is not a real absorption; the
photons are scattered into a different energy bin). Let
p =¢€(1, k) and g = y(1, B) be the initial momenta of the
photon and the electron, respectively. Various symbols have
the same meaning as above. The photon energy in the rest
frame of the incident electron is given by
x = pq = ye(1 — Bu), where p is the cosine of the angle
between the vectors [f and k. Now n;=n, +n_, §;; =0,
F;=F,dQ;=2ndu, #; = (1—fp),€; = €, and €; = 7. Sub-
stltutmg these expressions into equatlon (2.17), we obtain

19 =L | o )~ o) . 63)

where
14+ x| 2x(1 + x)
O oral(%) = 2nrf{ 3 [ T+ In(1+ 2x):|
In1+2x) 1+3x
T T 1+ 2x)2} G4

is the total cross section for Compton scattering (e.g., Jauch
& Rohrlich 1980, hereafter JR80). The integration domain
U is defined by ypn <9 < Pmax and —1 < p < 1 without
any restriction. Here y,;, and y,,,, are the limiting electron
energies, as in the previous case.

3.2. Effect of Pair Production/Annihilation on Photons

The emissivity due to the annihilation of relativistic
electron-positron pairs (creating two photons) has been
analyzed by many authors before (e.g., Zdziarski 1980;
Ramaty & Mészaros 1981; Yahel & Brinkmann 1981;
Svensson 1982a, hereafter S82a). We give here the final
result using the notation of S82a and refer the reader to that
paper for a detailed derivation. Let p; = y;(1, B); i = 1,2 be
the momenta of the electron and the positron, respectively,
in the C frame. Let q; = €(1, k) be the momentum of one of
the emitted photons. Here cf; are the particle velocities and
y; are the corresponding Lorentz factors, € is the photon
energy, and k is its directional unit vector. The momentum
of the C frame itself is denoted by g = (1, 0). We call the
center-of-momentum frame of the pair the CM frame and
the quantities in this frame appear with a suffix “cm.” The
particle momenta in this frame are p;., = Yem(l, Bom)s
Paem = 'ycm(lr _ﬁcm)a 9icm = €cm(l, kcm)ﬂ and 9em = yc(19
—B.)- Here y., is the Lorentz factor of the electron or posi-
tron, €, is the photon energy, and k., is its directional unit
vector (in the CM frame). The velocity of the CM frame as
measured in the C frame is ¢, and y, is the corresponding
Lorentz factor. Various directional cosines are defined
as follows: u, x, y, and z are the cosines of the angles
between the pairs of vectors (ﬂla ﬁZ)’ (kcm’ ﬁcm): (ﬁc: ﬁcm)a
and (B,, k), respectively; the angle between the planes
formed by the pairs of vectors (8., k.,) and (B., B..) is
denoted by ¢. After analyzing the kinematics, we obtain
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Yom =[5 + 7172(1 — B1 B2 /2], o = (41 + 72)/2em)s ¥ =

(’))1 - yZ)/(zﬂc ﬁcm Ve ))cm)’ Z= (6 Ye ycm)/(ﬁc yc ’))cm) and
xX=yz+ \/ [(1—y»)(1—z%)] cos ¢. Now using equation
(2.13) we obtain the pair emissivity

cn+ n_ ﬂcm Yem d¢
= dud d P
rl( ) j K ¢ tl_ll [Fe(yl) vl] ﬂc Ye V172 <d9>cm

(3.5)

The differential cross section in the CM frame is given by

do r 3
<E>cm = 3ol [_1 *

_ p4
T(C+ )

2 4 (CZ + Cz ):| B (36)

1/(1 + B.mX). The integration domain U in
equation (3.5) is given by yin < 71,2 < Ymae —1 < p <1,
and 0 < ¢ < 2m, subject to the condition —1<z<1,
which is equivalent to the condition I'_(y,, 7,, u; €) <
ycm(yla Y25 ﬂ) < 1"+(y1, Y2 K 6)5 Where Fi = €'yc(l i ﬁc)
Here y,,;,, and v,., are the limiting pair energies in the
plasma.

Now we obtain the photon absorption coefficient due to
pair creation. Let the initial momenta of the photons be
p=¢€(1, k) and p’ = €'(1, k'), with the usual meaning for
various symbols. If an electron-positron pair is produced
then the CM-frame Lorentz factor of the electron is given
bY Yem = /[€€(1 — p)/2], where p is the cosine of the angle
between the vectors k and &'. Using equation (2.17) we find

where (.

x(e) = 4 JdudeF (€)1 = W otal(Vem)- G-7

Since a(yy — ee) =
(3.6), we find

atotal(ycm) = T":ﬁcm |:(3 ﬁ ﬂjm ln (i * ﬁcm) - 2 - f :| °

cm cm - ﬁcm Yem
(3.8)

The integration domain U in equation (3.7) is defined by
—1<u<1ande* <€ <e,,,, where €* = 2/[e(1 — p)] is
the pair creation threshold energy and ¢,,,, is the limiting
photon energy in the plasma.

2B2 . o(ee — yy), by integrating equation

max

3.3. Bremsstrahlung Emissivity

The bremsstrahlung emissivity of a pair plasma has been
analyzed in several papers (e.g., Haug 1975b, 1985¢c, 1987,
1989; Dermer 1986). The final expression for the photon
emissivity can be written as

cozr2

Mpair(€) = jdudﬂ H [F(7:) dv,]

A,

where o is the fine-structure constant. The first term inside
the brackets represents the sum of the electron-electron and
the positron-positron contributions, and the second term
gives the electron-positron contribution. The expressions
for p, #,,, C;, and A,, along with the definitions of the
integration Varlables 1 and Q are given in the Appendix (see
also Fig. 1). The emissivity due to pair-proton bremsstrah-

|: (n% + n* )A_ +n,n_ C2i| , (39
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FiG. 1.—FEmissivity due to (a) electron-electron and (b) electron-
positron bremsstrahlung from a thermal plasma for three different tem-
peratures. The dashed lines represent the emissivity due to pair-proton
bremsstrahlung (given here for comparison). The energy of the emitted
photon is € and S = 4ne’y(e)/(cnyn, o1y), Where n, , are the appropriate
densities. These results agree with Haug (1985c) and Dermer (1986).

lung can be written as

_enng +n) [T do
nproton(e) - 47'[62 J;+€ dyFe(y)ﬁ<d€ > (310)

proton

where (do/de) ;10 15 the cross section for this process (see
e.g., JR80). Here the protons are assumed to be at rest.

4. COLLISION INTEGRALS FOR PAIRS

4.1. Compton Scattering of the Pairs

The effect of Compton scattering on the pair distribution
can be analyzed in a manner similar to that of the photon
Comptonization discussed in the previous section. Let p
and p, be the momenta of the incident electron and the
photon, respectively. Let ¢ and g, be their corresponding
momenta after the scattering. We require the final electron
energy to be y. Hence, we set g = y(1, f), where cf is the
velocity of the scattered electron. We write p = y,(1, f,),
p1 = €i(L, ky), and g, = €(1, k). Using g} = (p + p; — q)* =
0, we obtain a relation between the initial energy of the
photon and the final energy of the electron given by €, = €,
where

g b=l @4.1)

ay, —ay

In this equationa=1—f-k;,a,=1—p, -k, and b =
1—p-pB,. Let u be the cosine of the angle between
the vectors p and k,. The cosine of the angle between the
vectors B and B, is defined to be y'. The angle between the
planes formed by the pairs of vectors (f, k) and (B, B,) is
defined to be ¢. Now the emission coefficient due to
Compton scattering can be written (see the Appendix for
details) as

ny) = cn,(n_ + n.)r: Jdu du dg dy, F (y,)F,(€,)

dé,/dy
1 + de/dy

a; X
16meyp,

4.2)
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1 1 1 12
X=&+&+2<———>+<———>, 43)
P2 P P1 P2 P1 P2

while p, = a,€,y, and p, = aé,y. The integration region is
givenby —1<pu, ¢ <1,0<¢ <27 and y5, < V1 < Vimax
subject to the condition thate ;, <€, <e€_,..

Next we consider the absorption coefficient due to
Compton scattering. Let p = €(1, k) and g = y(1, p) be the
initial momenta of the photon and the electron, respec-
tively. The photon energy in the rest frame of the incident
electron is given by x = pq = ye(1 — Bu), where u is the
cosine of the angle between the vectors f and k. Asin § 3.1,
it can be shown that

where

x0) =" Jdﬂ de F (€)1 — B)oou(X) » (4.4)

where o,,, is given by equation (3.4). The integration
domainis givenby —1 <u <lande , <e<e

min — max*

4.2. Production and Annihilation of the Pairs

The analysis for this case is analogous to that for the pair
annihilation emissivity discussed above. Let p; = €;(1, k;) be
the momenta of the photons in the C frame, where ¢; are
their energies and k; are their directional unit vectors. Let
p = y(1, B) be the momentum of one of the emitted particles.
Here cp is its velocity in the C frame and y is the corre-
sponding Lorentz factor. The momentum of the C frame
itself is denoted by g = (1, 0). We denote the CM-frame
quantities with a suffix “cm.” Let p;., = €m(l; kem)s
D2em = €cm(l’ _kcm)’ Dem = ycm(l’ pcm)’ and 9em = ‘VC(L pc)
represent p,, p,, p, and g, respectively, in the CM frame. The
velocity of the C frame as measured in the CM frame is ¢fi,
and v, is the corresponding Lorentz factor. Various direc-
tional cosines are defined as follows: yu, x, y, and z are the
cosines of the angles between the pairs of vectors (k,, k),
(Kems Bem)s (Kems Be), and (Bem, B.), respectively. The angle
between the planes formed by the pairs of vectors (8., ﬂcm)
and (B., k., is deﬁned to be ¢. We have ch =€, =
[eie,(1 — w)/2]'2, = (€1 + €,)/(2¢.r), = (e; — &)/
(2Bcvc€em)s z=(y. vcm "—y)/A, whereas A= ﬂc Bem Ve Vems
and x = yz + [(1 — y*)(1 — z%)]** cos ¢. We can now
write (see the Appendix for more details) the pair creation
emissivity as

d
fdu dg H [F (e)ded -2 (é) :

(4.5)

where the differential cross section is obtained by multi-
plying the one glven by equation (3.6) with BZ,. The integra-
tion domain is given by €, <e€; , <€, —1<pu<1,
and 0 < ¢ < 2mn, subject to the condition —1<z<1,
which is equivalent to ' <y<TI,, where T', =
Ve Vem(l £ BeBem)-

For the absorption coefficient due to pair creation, con-
sider an electron of momentum p = y(1, f) annihilating with
a positron of momentum p’ =9y'(1, B). Their common
Lorentz factor in the CM frame is given by vy, =
[yy’(A — BB'w)/2]'/%, where u is the cosine of the angle
between the vectors p and p'. Settinge; = y,€; =y, n; =ny,

=0, dQ;=2ndy, Fj=F, and Z; ﬁ,yr(w) ! in

n@y) = 16 ﬁ
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equation (2.17) we find
ﬂcm ycm
X+(y) dV d[lFe(')) ) ')) atotal(ycm) (46)

The integration is over the region 7y, <7 < Pm.x and
—1 < p < 1 without any restriction. Here the limiting ener-
gies of the pairs are denoted by y,,;, and y,,...- Finally, 6., is
the total cross section for the pair annihilation, which is
ob‘gained by dividing the one given by equation (3.8) with
2B

4.3. Bremsstrahlung Cooling Rate

Since this process is much slower than all other reactions
(roughly by a factor of a—the fine structure constant) we
can treat it to be continuous in the energy and momentum
(e, A,/y < 1) and use a continuity equation to describe it.
At any time ¢, the density of electrons in the energy interval
(y, y + dy) is given by n,F (y)dy. Clearly n, F (y)y(y) is the
flux density of the electrons entering this interval, and
n,F (y + dy)y(y + dy) is that due to the electrons leaving
this interval (notice that } is negative in the case of electron
cooling). The net contribution to the electron or positron
kinetic equation is now given by

0 0 o
7 [OF(, 9] = — P [n(OF (v, 9] = C(y, 1) . (4.7)

The right-hand side of this equation is essentially
4nBy*(n — xf) for the process. The cooling rate || can be
written as the sum

151 = E.(0) + fdy’Fe(v')[Eee(y, ¥)+ Edr, 7)1 . 48)

The cooling rates E,,, E,,, and E,, for e*-e*, e*-e*, and
e*-proton processes, respectively, are given in the Appendlx
(see also Fig. 2).

4.4. The Effect of Coulomb Collisions

Finally, we analyze the effect of Bhabha and Mgller colli-
sions (collectively termed as Coulomb collisions) on the
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FiG. 2—Bremsstrahlung cooling time for (a) an electron and (b) a posi-
tron of energy y in a background thermal plasma (of electrons only) of
density n,. In the former case we use the cooling rate E,, and we use E,; for
the latter. Remaining cooling rates vanish in this particular example. The
dimensionless cooling time is defined by ¢, = |7 |/(cn, o1, ). Since the main
time scale in the kinetics of the plasma is =(cn,or,), t. < 1, at higher
energies this means that bremsstrahlung cooling is not very efficient at
these energies.
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electron spectrum (see e.g., Baring 1987b or CB90 for a
similar treatment and Dermer & Liang 1989 for a Fokker-
Planck treatment of this problem). Here we ignore the diffu-
sion term (which arises from the second-order derivatives
with respect to energy) that would arise in the Fokker-
Planck expansion of the kinetic equation as well as the
contribution from the pair-proton collisions (which is a
much slower process). Consider an elastic scattering in
which an electron with momentum p exchanges momentum
q with a target particle in the plasma which is either an
electron or a positron. In both cases the collision cross
section diverges for | ¢| — 0, and it falls off rapidly for larger
values of |g|. We define 0 to be the angle by which the
incident electron is scattered. Small values of |¢g| corre-
spond to the small-angle collisions (6 < 1). More precisely,
|q| = |p|6 when 6 is small. It is well known that the diver-
gence of the cross section for 8 — 0 results in the domina-
tion of the relaxation process by the scattering events with
small angular deflections. In many situations we can com-
pletely ignore the contribution from the collisions which are
producing large-angle deflections. Let [, be the distance an
electron has to travel in order that its mean-square deflec-
tion is ~n/2 and suppose L, , is the distance it has to travel
so that it is deflected by an angle of 7/2 in a single scat-
tering, with a probability close to unity. It can be shown
that L, , = 167*/(45znn,r?) and Lyjo/lyz = 21n Ac, where 7 is
the mean electron momentum in the background plasma.
The latter ratio, in a nonrelativistic plasma, turns out to be
81n A, but the expression for A is different in that case.
The Coulomb logarithm for a relativistic plasma can be
shown to be In A¢ = 37 + (31ny — Inn,)/2. In this equation
n, refers to the number of electrons per cubic centimeter.
We consider only those plasmas for which In A is greater
than a few, which means that only small-momentum-trans-
fer collisions are relevant. In this limit the Bhabha and
Moiller cross sections are equal. Therefore, we do not dis-
tinguish between electrons and positrons in the foregoing
analysis. Consider two distributions f; and f, of electrons.
The Boltzmann equation for f; can be written as a contin-
uity equation in the momentum space as

a i
5 =7 S 1), 4.9)

where S is the flux vector in the momentum space (see the
Appendix for its definition). Combining equation (2.8) with
the above continuity equation, we obtain

[7() — 2 fM]1 = C11() + C12() > (4.10)
where

0
Ci(y) = 4n’criIn Ac B o Idv’ﬁﬁ’v’ZQ(v, Y), (411)

while

1

Q(%v)—[fl(v) S0 — f(v)—fl(v)}j duBo(y, 7', 1) -

4.12)

The derivation of equation (4.11), along with the definition
of the quantities involved, is given in the Appendix. Here
C,, comes from the collisions within the electrons of dis-
tribution f; and C,, comes from the collisions of electrons
of distribution f; with the electrons of distribution f,. In
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F1G. 3.—Coulomb collision time for (a) a power-law distribution with
an index 6 = 2 relaxing in a thermal background and (b) a power-law
distribution relaxing through self-interactions. In both cases we have used
In A = 20. In general, the time it takes to establish thermal equilibrium is
many times that of the collision time. The spikes in these figures indicate
that the emission and absorption rates balance at that energy because of
the form of C, (see the text).

each case we have to use the appropriate electron density in
the Coulomb logarithm. Clearly, C,; vanishes when f; is an
equilibrium distribution. In Figure 3 we give two examples
of Coulomb relaxation. Recall that for electrons
f(y) = nF(y)/(4nBy?). In the first example (Fig. 3a) we con-
sider a nonthermal population of density n, and spectrum
F, oc y~2 for y > 1 interacting with a thermal background
of density n, > n,(f, is the background distribution) and
temperature ®. The electrons relax mainly through colli-
sions with the background and the reaction rate is deter-
mined by C;, above (C,, is negligible). The dimensionless
collision time is defined by t, = cn, o1y, f1(7)/| C12(7)|. In the
second example (Fig. 3b) we consider a power-law distribu-
tion of density n, and an index J, relaxing through self-
interactions (there is no thermal background). In this case

te=cnom 1)/ C11() |-
5. THE COMPUTATIONAL METHOD

In the kinetic theory approach to nonequilibrium
plasmas that we have presented in the preceding sections,
the computational task is reduced to evaluating many colli-
sion integrals (for each energy bin, after each time step)
quickly and efficiently, without compromising on the flex-
ibility to handle many types of distribution functions. Now
we explain our new algorithm for adaptive Monte Carlo
integration which meets this demand. Our approach is
similar to the PSD method discussed in the introduction,
with the principal difference being that we are not using the
conventional MC method (based on uniform sampling) to
compute the transition probabilities (the collision integrals).
There are also some similarities between our method and
the LP method described in the introduction. Both methods
use statistical weights within a Monte Carlo scheme. In the
LP method, these weights are introduced in an ad hoc
fashion, based on the energy carried by the LPs. In our
method, we use probability weights (see below) to enhance
the sampling rate in those regions where the contribution to
the integral being evaluated is greater. But these weights
(known as importance weights) are generated internally,
through a minimal-variance prescription (see eqs. [5.12]
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and [5.14]). Therefore, what we are using is a Monte Carlo
method based on importance sampling.

Being a kinetic theory approach, our method bears a lot
of resemblance to that of C92. Both methods discretize the
kinetic equations by following the particle and photon sta-
tistics with reference to energy bins which are equally
spaced logarithmically. Both methods have similar simplify-
ing assumptions about the isotropy and the spatial uni-
formity of the photon and pair distribution functions. Our
method is more flexible than that of C92 because of the
adaptive nature of the underlying Monte Carlo scheme
(C92 uses numerical integration to compute the collision
kernels). However, there are several differences between
these two methods. It is straightforward to deal with aniso-
tropic distributions in our method, except that some of the
collision integrals given in this paper require some modifi-
cations to incorporate them. Moreover, we have not taken
into account, the escape of photons and pairs from the
system. We use the exact collision kernels throughout. In
contrast to the method of C92, our time-evolution code is
entirely dynamic, i.e., we do not precompute and store any
quantities, which makes our method more flexible. The inte-
grands of some of the collision kernels have very narrow
peaks (“integrable singularities ”) which are hard to evalu-
ate through numerical methods used before (e.g., C92 and
references therein). Such “singularities ” can be easily inte-
grated by our method. No special attention is required
because the algorithm is adaptive; it automatically adjusts
the sampling rate, iteratively, to a high value at such points.
Now we describe our computational method in detail.

5.1. Discretization of the Kinetic Equations
In order to simplify the analysis, we will consider only the
case for which n, =n_=n, and F (y) = F_(y) = F(y).
This can be easily extended to the more general case. Let the
net collision rate for the photons, due to Compton scat-
tering, be given by

Ale, t) = 47162[7[y(€, 1) — e, Dx e Deyoey - (5.1)

The corresponding collision rate due to pair annihilation
and creation (ee — yy) is denoted by B,(e, t). In an analogous
way we define A,(y, t) and B,(y, ) for the corresponding
collision rates for pairs. From the photon rate equation

% [n,()F (e, t)] = A€, t) + BJe, 1), (5.2)

we obtain

[A,(, ) + B,(e, t)JAt — F (e, )An (1)
n(t) + An.(t) ’

where AF (e, t) = F (e, t + At) — F (¢, 1), An(t) = n(t)At,

and 7n.(t) is given below. Similarly, we can obtain AF (y, t).

The time increment At for each time step is chosen in such a
way that

AF (e, t) = (5.3)

At < f(y, 1)

(5.4)

for all values of € and y. In our computation we have used
v = 0.1, which means that the maximum change in F, or F,
in any energy bin, during any time step, is less than or equal
to 10%. Now we determine 7, arising from the pair pro-

6% f(e, )| At < vfi(e, t) and ‘% L, 0
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cesses (there is no change in n, or n, arising from Compton
scattering). We have

J “dede,1)=0 and i) = j “deBe, 1) (55)

and two analogous equations for pairs. It can be shown that
the positron annihiliation and creation rates are given by

cng(t) ’ !’ ﬂcm y?m
5 dudydy'F (y, F (y', 1) " Ceemsyy

flann(t) =

(5.6)

and
2
flcr(t) = %(t) J\d” de dG,FV(G, t)Fy(e,, t)(l - :u)o.yv—we »

(5.7)

respectively. Here o,,_,,, and o, are the total cross sec-
tions, which are given in the previous sections. For each
positron annihilated or created, there will be a creation or
annihilation, respectively, of two photons. Therefore we
have

ny(t) = 2I:';lann(t) - ncr(t)] and ne(t) = flcr(t) - ﬂann(t) .
(5.8)

We remark that n_ =7, = n,. We have verified equations
(5.5) and (5.8) are satisfied in all our computations for time
evolution, which implies that the particle number is con-
served. In addition, we have verified the conservation of the
total energy after each time step. Now we can use equation
(5.3) iteratively, to obtain the time evolution of F, and F,
from the initial data, viz., F (y, 0), F (e, 0), and the initial
densities. We have discretized the energy (e and y) with
twenty energy bins per decade of energy and used a
logarithmic interpolation between these points to recon-
struct F, and F, for the subsequent time steps, which are
then used in the collision integrals. Now the problem
reduces to an efficient evaluation of these multidimensional
collision integrals with complicated integrands. For this
purpose we have developed a new version of an adaptive
and iterative Monte Carlo method. It progressively adjusts
itself to the nature of the integrand. We describe our algo-
rithm below.

5.2. The Adaptive Monte Carlo Method

A general purpose algorithm for multidimensional inte-
gration which is widely used in the experimental particle
physics is given by Lepage (1978). It is an iterative and
adaptive scheme. A computer program implementing this
method, known as VEGAS, can be found in Press et al.
(1992). However, we have found that it has several short-
comings when applied to the type of integrals that arise in
the kinetic theory. Not only is the convergence weak in
some cases, we have found that the subroutine gave erron-
eous output for the high-energy tails of the distributions.
This is a significant obstacle because of the integrals over
energy that we have to perform at the end of each time step.
That integration makes the errors propagate to lower ener-
gies (where the results are otherwise accurate) during the
succeeding time steps. We will briefly explain the original
method by Lepage and then describe our modified scheme
which can handle the integrals we need. First, by scaling the
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integration variable, any multidimensional integral can be
written in the form

= f rf (), (5.9)

where r = (zy, 2, ..., z,), dr = | [{=, dz;, fis the function to
be integrated (which is continuous and well behaved) and
the integration is over the n-dimensional hypercube
0<z;<1,i=1,2, ..., n. If we generate M > 1 random
points r, with a normalized probability density p(r) then
the integral can be approximated by

jNLZM

TR (5.10)
The variance is given by
P i
’ [”]‘M—l["’ o) j]
1 )
> 1 [Zk:m—fz]. (5.11)

The optimal choice for p(r) which minimizes the variance is
derived from

;p {az[p] + A jdrp(r)} =0, (5.12)
which implies that
p(r) = &jr)l . (5.13)

This is the central theme of the importance sampling tech-
nique, sample more in the regions where the absolute value
of the function is larger. However, observe that the denomi-
nator is the integral itself! Thus we need an algorithm to
solve it iteratively, starting with a reasonable guess for p.
Then we calculate the integral by using equation (5.10)
which then determines the new form for p(r), and so on. If
this process converges in a manageable number of iter-
ations, then we will have achieved our goal. The data
storage requirements of directly implementing this scheme
are well within the reach of many present-day computers.
The method by Lepage consists of a restrictive assumption
that the probability density is separable. For instance, when
n =2 and r = (x, y), the separability means that p(x, y) =
p(X)p,(y) and to minimize the variance we need

5 1 1
o {az[px, P, + 4, L dxp,(x) + 4, L dypy(y)} =0,
(5.14)
which implies that
o) = 0 VLS 9)/p, T} (5.15)

Jo dx[f5 dyLf(x, »)/p,(0)1">”

and a similar equation for p (y). For arbitrary dimensions,
this scheme is implemented in the VEGAS subroutine, men-
tioned before. The motivation for assuming the separability,
according to Lepage (1978), is that it limits the storage
requirements. It is not a good assumption in general. There-
fore we proceed to implement importance sampling
directly. All essential features of the algorithm can be cap-
tured in a one-dimensional example which we will consider
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first. Then we will show how it can be generalized to higher
dimensions. Consider the integral .# = [§ dxf(x). Let p(x)
be the normalized probability density we want. Suppose
N is an integer greater than unity and 0 = x, < x; < X, <

..<xy=1,while Ax; = x;, —x;_; fori=1,2,..., N. We
will use the following discrete representation of the prob-
ability density:

p(x) = NTxl if X1 <x<Xx;, (516)
so that [¥_, dxp(x) = 1/N for all i. Here the bin sizes Ax;
need not be all equal, but all bins have the same probability
weight. If the bin sizes are equal, we will get a uniform
probability distribution leading to the crude Monte Carlo
method. Now the integral is approximated by £ =
YL | f(a)/Mp(ay), where 0 < a; < 1 are uniformly distrib-
uted random numbers. Typically M > N. Let
N M
. 1

“=M A cik)| fla)l, (5.17)
where c;(k) =1, if x;_, < a, <x;, and is zero otherwise.
Clearly, > X, u;Ax; = 4. Therefore w; =u;Ax;/# is the
importance weight associated with the ith bin. Since differ-
ent bins contribute different amounts to the integral, the
idea now is to find a new set of bin spacings {x,, x,, ...,
Xy—1}, S0 that all bins have equal importance weight w, =
1/N. Let | be an integer (which depends on the bin location
i) such that

1+1
Z Wy <iWg < Y, W, (5.18)

m=1 m=1
Then the new grid position for the ith bin can be obtained
from

1

1
xi,new = xl,old + W_ Wy — Z
0

m=1

wm>(xl+ 1,01d = X1,01d) -
(5.19)

However, in practice we must damp the convergence so that
the contribution from the low-importance bins is not overly
suppressed. As in the method by Lepage, we will damp the
convergence by using the modified importance weights

given by
1—w, |
= ———— 2
" [1og (1/wi)} ’ 20

which gives wy, = Y™, w)/N. We now replace w, and w;
with the corresponding primed quantities in the above
equations. The new probability density is now determined
by using equation (5.16) and the process is repeated iter-
atively. If it converges, we will have x; .., = X; .4 for all i,
from which we can obtain the desired estimate for .#. Now
we give the extension of this scheme to two dimensions. We
will assume that the number of bins is N for each dimen-
sion. A discrete representation of the probability density is
given by

1
N?Ax; Ay;
ifx;_; <x <x;and y;_; <y < y;. This does not mean that

the probability density is separable because Ax; and Ay; are
not independent in general. The integral is now estimated

p(x, y) = (5.21)
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1 & flaw by
M = play, by ’

where 0 < g, < 1 and 0 < b, < 1 are uniformly distributed
random numbers. Let

I ~

(5.22)

b=y el bl (523

where c;;(k) =1,if x;_; <a <x; and y;_; < b, <y;, and
is zero otherwise. Now we define u; =), h;Ay; and
v; =Y, hjjAx;. Clearly, & =N u;Ax; =) _; v;Ay;.
Let w,, = u;Ax;/# and w,, =v;A,/S. From these impor-
tance weights for x and y grids we can obtain the corre-
sponding damped weights and proceed to iterate as if these
were two one-dimensional problems. Generalization to
arbitrary dimensions is now straightforward.

In all our applications we found that the values N = 70
and « = 1.3 (for the damping index) gave stable and satis-
factory results within at most 10 iterations or so. In general
it is advisable to start with a few thousand samples and after
several iterations, increase M (and retaining the resulting
grid) and further iterate, and so on. For many types of
integrals, of at most five dimensions, we found that M,
10* samples to be adequate. For all the results presented in
this paper, we have used the subroutine ran2 in Press et al.
(1992) for the random number generation. We find that our
method is faster than the crude Monte Carlo method (using
uniform sampling) by a factor of 10 or better, which is also
the case with the method by Lepage (when it is applicable).

6. TIME EVOLUTION AND EQUILIBRIA

Here we give an analytical description of the equilibrium
states of a pair plasma, in terms of the initial conditions. For
two specific examples, we follow the relaxation toward equi-
librium using our time-evolution code. These examples are
meant to demonstrate that the whole formalism of this
paper (the collision integrals and the computational
method) actually works. We are considering a homoge-
neous, stationary, isotropic, and nonmagnetic system. There
are no radiative transfer or hydrodynamic effects. On short
timescales t ~ t, = (.o, )~ ! the kinetics is determined
by the rate equations alone (see eq. [2.8]). We have seen that
the collision integrals for these equations are nonlinear
functionals of the distribution functions. Given the initial
state of the plasma, we can solve these first-order coupled
and nonlinear integro-differential equations to determine
the time evolution of the distributions. The system is char-
acterized by the densities n,, n,, and n, and the spectra F (e)
and F(y), all of which depend on time. Their values at t = 0
define the initial state of the system. The total density of the
particles is given by i = n, 4+ 2n, + n,, and the total energy
dens1ty (including the rest energy of the pairs) is given by
#i=u,+u_+u,, where u,=n, [ eF(e)de and u, =
n. jl yF (y)dy. The mean energy per partlcle is glven by
€ = u/n. We see that there will be no change in 7i due to
Compton scattering or the pair annihilation and creation. It
will change only as a result of bremsstrahlung (also double
Compton scattering and the pair annihilation into three
photons) which operates on a longer timescale t & tg;,/o (« is
the fine structure constant). However, # remains constant
throughout. Therefore we can divide the approach of the
system toward equilibrium into two phases: (1) The faster
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phase in which both # and # remain constant and the
system approaches to a state of kinetic equilibrium so that
the total reaction rates for Compton scattering and the pair
annihilation vanish (separately). This state is characterized
by a temperature ® and the chemical potentials fi, and fi..
(2) The slower phase in which # is constant but 7i changes,
mainly due to bremsstrahlung (or its inverse, and other
radiative processes) so that the system finally reaches a
thermal equilibrium state characterized by a temperature
®, and a total density n,. In this state the chemical poten-
tials vanish (see below). If ®, < ® then n, > 7, which
means that this phase is mainly the cooling of the plasma
through bremsstrahlung and other similar processes. On
the other hand, if ®, > © then the plasma will heat up due
to the inverse bremsstrahlung (free-free absorption) and
other radiative processes.

6.1. Kinetic Equilibrium: The Densities
and the Temperature

Consider Compton scattering of an electron of energy y
and a photon of energy e. The respective energies after the
scattering are taken to be y’ and €. If the total reaction rate
vanishes, then we have

romie| 1+ o1 | =snsie] 1+ 510 |, 60

where we have retained the Bose-Einstein enhancement
factor for the photons and 4, = h/mc. The factor half in this
equation takes into account the polarization degeneracy of
the photon states. Using the general form of the distribution
functions

2
1) = Ziexp (€ — myi@, — 1
and (6.2)

fely) = exp ( ®: y>

and equation (6.1), we find ®, = ©, = ©_. We denote this
common temperature by ®. Notice that equation (6.1) does
not yield any condition on the chemical potentials. Now
requiring that the total reaction rate should vanish for the
pair annihilation and creation as well, we find

3 3
ras- o 1+ 2 s 1+ B pien | = steosien

(6.3)

where y,. are the pair energies and €, , are the photon
energies. Using the fact that the pairs and the photons have
a common temperature ®, we obtain from this equation
g+ ﬁ+ = 2ﬁy. If there are no ions in the plasma (i.e.,n, =
0) theni_ =7, so that i_ = i, = ji,. By assuming that
exp [(e — 1,)/@] > 1 and exp [(y — u+)/®] > 1, for the rel-
evant energies, we obtain the distribution functlons in the
kinetic equilibrium state to be
2 iy —y
exp < 5 ) .

(6.4)

e = eXp (uy® ) and f.(y) =
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The densities are given by

i, = jw4n62ﬁ(e)de = 167r</19>3 exp ( ) (6.5
and

" ® 87 ~ o (1
i = | 4mp/y” — 1 ful)dy = o5 OK,( = ) exp he ;
. A3 0 0
(6.6)

where K, is the nth-order modified Bessel function of the
second kind. Using the relation 2ji_, = ji_ + ji,. we find

fi, = 4C2ﬁ+(np +17y), (6.7)

where { = ©%/K,(1/0). Finally, from the equation #i, + 27,
+ n, = 7, we obtain the densities 7, and 7. in terms of 7
and n,. When { # 1 we obtain a quadratic equation for 7.
It turns out that only one of its roots is physical (i.., both,
and 71, are nonnegative). The physical root is given by

fiy =300 —n)1-)"" —mn,], (6.8)
where n, = {[A* — (1 — Cz)nzjl/2 When ¢ =1 (which is
true when @ 0.493) we get i, = (fi — p)z/(4n) Therefore
we have the necessary densities in terms of the temperature.

When there are no ions (n, = 0) these solutions take a
simple form given by

®1|'21

K,(1/0)
26% + K,(1/8)]
and 6.9)

e
" 82 4+ K,(1/8) "

Now we determine the temperature in terms of the initial
data. We have

ii =1, =

i, = j °°47re3fy(e)de = 30, (6.10)
0
and
) 36 o1 g 1(1 O ~
i =£ P17 — L fa()dy = oK (I/((:)()J@;( o) ;.
(6.11)

Using the energy conservation equation ji = fi, + fi_ + fi,,
we get the temperature as an implicit function of fi, i, and
n,. In the limit where n, = 0, we have

%
L8k, 1/8)"

and (6.12)
N 3®Kz(1/@) +K,(1/8)
tH 8’ + K,(1/8)

In this case, the equation for the temperature takes the form
30% + 30K,(1/0) + K,(1/8) = e[0? + K,(1/0)],
(6.13)

where € is the mean energy per particle (which is determined
by the initial conditions).
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6.2. Thermal Equilibrium: Densities and the Temperature

Here we determine the final temperature and densities
resulting from the radiative processes in the second phase.
We have pu_ +pu, =2u,=0. Let p, = —pu_ = p, and
z = exp (1o/0,). Clearly

8n _ 16703

ne =5 @ K(1/@0zt! and n,= =30, (614)
0 0

Using the fact that n_ = n, + n ., we can show that

16
n_+n, = Tf 0, K,(1/0) /1 + %%,  (6.15)
0

where x = A3n,/[1610, K,(1/0,)]. In the nonrelativistic
limit (®, < 1) the pair density is given by

4
notn,=-3 (2nO,)*% exp (—1/©)
(0]

1 1
N [1 +§5®0+112§®3]«/1 +x*. (6.16)

It can be shown that the pair energy density is given by

16
u_+u, = T;t [302K,(1/0,) + 0, K,(1/0)]/1 + X7 .
0

(6.17)
Finally, energy conservation implies
8n°OF

15

+16n[302 K,(1/0,)

+ O K (1/@)1/1T+x2 =230, (6.18)

where the first term on the left-hand side is the contribution
from the photons. We can solve this equation for ®, in
terms of ji and x (equivalently n,). This completes the ana-
lytical description of the thermal equilibrium state in terms
of the initial data. This treatment is exact and is valid for all
energies (relativistic or otherwise) and densities (so long as
the plasma is nondegenerate).

6.3. Time Evolution of the Spectra: Two Examples

Now we consider the time evolution of the plasma for
two specific initial conditions. In the first case the initial
photon and the pair distributions are flat (i.e., F is constant)
and nonzero within the energy (in MeV) interval
0.1 <emc* <10 and 0.1 <(y — l)mc* <10. The initial
densities are taken to be n, =n, + n — =2 x 10*® cm>.
For this case we find a kinetic-equilibrium temperature
©® = 3.43, and the corresponding densities are found to be
fign = 1.36 x 10*° cm® and 7i_ =i, =132 x 10*° cm®.
Monte Carlo evolution of the spectra for this case are
shown in Figures 4 and 5. They agree well with the analyti-
cal kinetic-equilibrium solutions. For this case, as well as
the second one, we have used tp, = (cor,n)” ', with
n =2 x 10%° cm?>. In the second case we start with the same
densities of the photons and pairs, and the initial distribu-
tions are confined to the same band width as above. The
only difference is that F,(e)oc e * and F(y) oc 2, with
suitable normalizations. In this case we obtain a kinetic-
equilibrium temperature ® = 0.663 and the corresponding
densities are found to be iy, = 1.73 x 10*° cm ™ * and7i_ =
fi, = 1.1 x 102° cm ™3, Monte Carlo spectra for this case

Vol. 486

l -6 L L L L L L L
10® 10% 10" 10° 10" 10° 10% 10" 10° 10" 10°
€ €

Fi1Gg. 4—Time evolution of the photon spectrum (solid line) starting
from a flat initial spectrum (dashed line). Initial pair spectrum is flat as well.
It is clear that the softer end of the spectrum relaxes first. The same pheno-
menon is observed in the pair distribution (not shown here).

F.(e)
o

Fo(Y)
5

10' \_ \_ I I
: 2 10" 10° 10
(@) € and (b)y-1

1

F1G. 5—Final Monte Carlo spectra (the solid histograms) at t = 45¢,,
compared with the analytical solution (dashed curves) for (a) the photons
and (b) the pairs, starting from the flat initial spectra. See § 6.3 for details.

y-1 y-1

F1G. 6.—Evolution of the photon spectrum (solid line) starting from the
power-law (6 = 2) distributions of the photons (dashed line) and the pairs
(evolution not shown here). As in the previous example, the relaxation is
faster at lower energies.
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F.(€)
)

Fo(Y)
s

10- L L L
N 10° 10" 10° 10
(@ € and (b)y-1

FiG. 7—Final Monte Carlo spectra (solid histograms) at t = 40t, com-
pared with the analytical solution (dashed curves) for (a) the photons and
(b) the pairs, starting from the power-law initial spectra. It is evident that
the high-energy tails persist for a long time, becoming steeper with time
(analogous to the relaxation in a nonrelativistic plasma), but the number of
particles (and the energy) in these tails is less than a few pecent of the total.

are shown in Figures 6 and 7. Once again they are in a good
agreement with the analytical solution. We have verified the
number and energy conservation after each time step. The
final densities are found to agree with the predicted values
within an accuracy of 10% or better (which can be
improved by using more energy bins). In both cases the
kinetic-equilibrium solution is moderately relativistic. It is
clear from Figures 5 and 7 that the low-enegy part of the
spectrum relaxes before the high-energy end. The cross sec-
tions (and hence the reaction rares) decrease with the
energy, thereby making the relaxation slower at higher
energies. A part of the deviation from the analytical solu-
tions that we see in Figures 5 and 7 (in the high-energy tails)
could be an artifact of our sparse (logarithmic) binning at
higher energies. It can be rectified by using more bins in the
high-energy end (and more computing time). For the above
cases the final thermal-equilibrium temperatures turn out to
be ®, = 436 x 10" 3and ©, = 2.98 x 10~ 3, respectively.

7. CONCLUSIONS

We have developed a new computational method for
solving the Boltzmann equations of a pair plasma which is
applicable for arbitrary energies (in the X-ray and y-ray
bands), densities, and distribution functions. We have fully
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analyzed all relevant microscopic processes in a pair plasma
viz., Comptonization, the pair creation and annihilation,
bremsstrahlung and the associated cooling, and Coulomb
collisions. The spectra from the individual collision inte-
grals, using our expressions and the numerical method
(for Compton scattering, pair annihilation, and
bremsstrahlung), are in a good agreement with several pre-
vious results obtained by using different methods (e.g.,
S82a; CB90; Dermer 1986). The analysis given in this paper
can be very easily extended to an inhomogeneous and
anisotropic plasma. It will only change some of the collision
integrals and add a spatial component to the kinetic equa-
tions. That will result in an increase in the computational
time but it will still be manageable by the present-day work
stations. Presence of the magnetic fields will alter the
kinetics (through synchrotron emission), and it can be
modeled along the same lines as that of C92. We have devel-
oped a modified version of the adaptive Monte Carlo
method which is very efficient and robust. It is faster than
the crude Monte Carlo method (using uniform sampling) by
at least a factor of 10 and is more flexible than the numerical
integration methods (which do not use random sampling)
which are used in the past. We have obtained the analytical
equilibrium solutions for a general set of initial conditions.
Finally, we have tested our Monte Carlo evolution scheme
for two specific sets of initial conditions and found that the
results compared favorably with the corresponding analyti-
cal solutions. The method is found to be very stable. In each
of the examples considered, the program has analyzed a
total of ~10° collision events. This stability, accompanied
by its generality and the inherent flexibility, makes this tech-
nique suitable for many astrophysical applications. In par-
ticular, this formalism can be applied to the expanding pair
plasmas in the y-ray-burst sources in their final stages of
evolution (when they are only moderately optically thin),
AGN, and the emission from hot accretion discs near black
holes.
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due to the referee, Paolo Coppi, for many useful suggestions
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5-2841.

APPENDIX

A.l. COMPTON SCATTERING RATE FOR PHOTONS

The cross section in the C frame is given by

do _1do
dP ~ €2 dQ

ée — &), (A1)

with d(e — €) = d(e; — €,)d€ /de. Here dQ is an infinitesimal solid angle around the direction k (similarly dQ0’ is defined with

respect to k). It is easy to see that d€, /de = £2aa; . Now

do _
dQ C-frame B dQ

do
<d_Q>R-f rame . (A2)
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Since €2dQ = €'%dQ) we get dQ/dQ’ = (ya)*. Finally,

do rZA
(E>R-frame - 263 (A3)
is the Klein-Nishina formula in our notation, where A = ¢ — ¢ sin? ' + 1. This leads to
de 1> A
= — A4
dP € a, 2'}) af 5(61 61) ( )

In equation (2.13) we set B, =1, #,=a,, ny=n, n,=n_+mn,, F,=F, F,=F, €, =1y and 6;, =0. Clearly
dQ,dQ, = 2ndudydp,a=1— Bu,a, =1 — Bu’, where p’ = up' + [(1 — (1 — ,u’z)]l/2 cos ¢, and b = 1 — u. These sub-
stitutions lead to equation (3.2).

A.2. BREMSSTRAHLUNG EMISSIVITY

Here we derive equation (3.9) and explain the notation used in that connection. We are interested in the processes in which
two particles of momenta p; = y,(1, f;), i = 1, 2 radiatively scatter on each other to produce a photon of momentum p =
€(1, k). Here cp; are the particle velocities in the C frame and y, are the corresponding Lorentz factors, € is the energy of the
emitted photon, and k is its directional unit vector. Let u, ¢/, and p” be the cosines of the angles between the pairs of vectors
(B1, B2), (B1, k), and (B,, k), respectively. The angle between the planes formed by the pairs of vectors (8,, f,) and (8,, k) is
defined to be ¢. We have p” = pp’ + [(1 —p®)(1—u'?)]Y2 cos ¢. In equation (2.13), because of the isotropy of the distribution
functions, we can write dQ, dQ, = 2ndudQ, where dQ is an infinitesimal solid angle around k. We define (do/de); =
€* | dQ(do/dP),. The case i = 1 refers to the e*-e™ process and the case i = 2 refers to the e*-e™ bremsstrahlung. It is shown
by Haug (1975b) that

2

C.

do fxreGJdQ : if e <e*,

(E) =4 =z PA,; (AS)
’ 0 otherwise ,

where A; = w(w? —4)'%, A, =2((* - 1)'2, and p = [w® — 2x; + x,)]"%, while @ =[2({ + 1)]"%, {=pip, =7:7,(1
— BiBaw), x, =pp, = €y,(1 — B i), and x, = pp, = €y,(1 — B, p"). Here a is the fine-structure constant. Finally,

* _ (-1
y1+ 72— [y + 927 — 2 + D]V?°

_ {_v f’;— 4 J AdQ’} . (A7)

The cross section C; was computed by Haug (1975a, eq. [A1]) and C, by Haug (1985a, eq. [A1]). This latter cross section has
some minor errors, and the corrections are given in Haug (1985b). For C, , we have followed the notation of Haug except that
dQ) was called dQ,, in C, and it was called dQ, in C,, in those papers. Gomg back to equation (2.13) we have to setd;, = 1
for the case i = 1. Hence n,n, — 3(n% + n2). In the second case ,, =0 andn;n, >n,n_. Wehave F, = F, = F, ande; = v,
for i =1, 2. With these substitutions the desired result follows. In the present notation %, = ({* — 1)1/ 2/y1y2 and
dQ = dy' d¢. The integration domain U is specified by yin < 71,2 < Ymae —1 <t ¢/ <1, and 0 < ¢ < 27, subject to the
condition that e¥*(y,, y,, u) = €.

(A6)

and

A.3. COMPTON SCATTERING RATE FOR PAIRS

The cross section can be written as (see, e.g., JR80)

2
2eyp,

where dt, = d*qd’q,, ¢ = yp, ¢, = ek, while X is given by equation (4.3). Here p, = pp, = qq, and p, = pg, = p;q. In
equation (A8) we can remove three of the delta functions by integrating over d°q’. Using the conservation of three-momentum
we obtain €2 = (y, B, + €,k; — yB)* and de/dy = (yB — y,B1 i’ — €,10)/Be, while p and p’ are defined in § 4. After some straight
forward manipulations we find

g =

fdrf g +4q,—p—p)X, (A)

2

do rs dé,/dy

dP 2yep, |1 + de/dy
where dP = d3q = By* dydQ, and dQ is the infinitesimal solid angle around the direction B. Now in equation (2.13) we set
Bra=1,F,=a,n = n ,m,=n_+n,, F,=F, F,=F,6é,=0,ande, =y,. Clearlya =1 — fu,a;, = 1—p,u", where
wo=pp +[A—pHA—y )]1/2 cos ¢, and b= 1= BB, w. Finally, dQ,dQ, = 2ndudy d$. These substitutions lead to
equation (4.2).

‘ Xo(e, — &,), (A9)
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A.4. PAIR CREATION RATE

Let dQ; be the infinitesimal solid angles around &; for i = 1, 2. Infinitesimal solid angles around p and f,, are denoted by dQ
and dQ.,, respectively. In equation (2.13) we have dQ,dQ, =2ndudQ because of the isotropy. We define do/
dy = By* | dQ(do/dP), where dP = By*dydQ. Wesetn, =n, =n,, 8;, =1,%,, =1 — p,and F; = F, = F,. It can be shown

that
do d'ycm d20. dycm da
== |40 = | 4@ = -

where H is the Heaviside step function which is zero for negative arguments and is unity otherwise. The latter imposes the pair
creation threshold. It can be easily seen that dQ,,, = dzd¢. The delta function in the last equation ensures energy conserva-
tion. It can be written in the form 8(y.,, — €..) = | dZ/dy ., | 6(z — %), where £ = (0, Yo, — YA and A = B, B Ve Vern. This is
the solution to the equation y = y, yem(1 — B Bem 2) (i€, P4 = Pom dem)- Finally, |dz/dy| = A™1. After all these substitutions in
equation (2.13) we arrive at equation (4.5).

A.5. BREMSSTRAHLUNG COOLING FUNCTIONS

Here we give the cooling functions used in equation (4.8). The energy radiated per unit time in e*-proton collisions is given
by

y—1
E () = cn, f de €<d_a> , (A11)
(0] dE proton

where the protons are assumed to be at rest. Here € is the energy of the emitted photon and do/de is the cross section (see, e.g.,
JR80). For E,, we start from equation (3.5) of Haug (1975b). After some algebra we arrive at

_c(n§r+nz_)y+y’J'1
2n, o J-a

Eee(ya y,) du pL‘ Qee(€c> pC) b (A12)
where €, = [({ + 1)/2]'2, p. = [(( — 1)/2]'/?, and { = yy’(1 — BP'u), while u is the cosine of the interaction angle. Averaging
over this angle (u-integration) gave rise to the factor of half above. Presence of n, in the denominator is a consequence of our
definition of E,,. The cooling function Q,,, which is accurate to ~6% or better, is given by equation (3.15) of Haug (1975b).
We reproduce it here for convenience:

2 4P, 2 2
Q82 21224 2 (24 2 (e, +p) |, (A13)
€, 3e 3 €
where o is the fine-structure constant. For e*-e™ process we get
enyn_y+7y (*
Eee v’ vl = ’ f dupc ee ec’ pC . A14
0 7) =5 | depcQudes P (A14)

The cooling function @, is given by equations (26) and (28) of Haug (1985c). For the sake of convenience, we reproduce it
here:

Foar? Y apl if E, < 300 KeV ,
Quc = =0 (A15)

2
16ar[e In(e, + p,) — t€. + Y, b;e;']  otherwise,
i=0

R

where a, = 1.096, a, = —0.523, a, = 0.1436, a; = 1.365, a, = —0.532, b, = —0.726, b, = 1.575, and b, = —0.796. Here
E, = mc’e,.
A.6. LANDAU COLLISION INTEGRAL FOR COULOMB COLLISIONS
The flux vector (see Lifshitz & Pitaevskii 1981, hereafter LP81) is given by

. 2 0 0 .
1(p) = ; d3p'[f1(p) a0’ 1) = 14p) o fl(p)]B” : (A16)

The superscripts i, j in this equation denote the components of three-vectors or tensors. In equation (A16) the summation over
j is implicit. The components of momenta are given by p' = yB' and p" = y'B", for i = 1, 2, 3. We have a’p’ = By?dQY. Let
{ =9y'(1 — BB’ n), where p is the cosine of the interaction angle. The tensor B* (see LP81) is given by

_ 2merlInAc(?
@ -
where we have made some slight modifications to take into account the dimensions of the distributions and the momenta.
This tensor satisfies the identify ) ?_; BY(f/ — p7) =0, for i = 1, 2, 3. For istropic distributions we have df,/dp’ = p'df,/0y.

ij

[(C% — 1)0Y — BBy — BRIy + (BB + BBy (], (A17)
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Using this fact and the previous identify we obtain

3
1= fdv’ dQpY* 7, v) 2B (A13)
where
2 0 0
2.0, 7) = ; [f 1) ay 1) — 10 En i 1(?)] . (A19)

We choose a coordinate frame in which g* = g, p>3 =0, B! = f'u, B* = B(1 — p?)'/?, and B® = 0. Also dQ' = 2ndu. With

these substitutions we find

0 0
5 ) =—F P f 2ndudy BBY*B21(y, V) , (A20)

where B = 2ncr? In Ac B, and
Cz
Bi=—>
(-

e (€ = 1= B> — B%y"%u® + 2BB'yy'ul) . (A21)

The integral in equation (A20) is the Landau collision integral for small-angle deflections. This leads to the required result.
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