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ABSTRACT

The theory of spectral formation in thermal X-ray sources, where the effects of Comptonization and Klein—
Nishina corrections are important, is presented. Analytical expressions are obtained for the produced spectrum
as a function of such input parameters as the plasma temperature, the optical depth of the plasma cloud and
the injected soft photon spectrum. The analytical theory developed here takes into account the dependence of
the scattering opacity on the photon energy. It is shown that the plasma temperature as well as the asymp-
totic rate of photon escape from the plasma cloud determine the shape of the upscattered hard tail in the
emergent spectra, even in the case of very small optical depths. The escape distributions of photons are given
for any optical depth of the plasma cloud and their asymptotic dependence for very small and large optical
depths are examined. It is shown that this new generalized approach can fit spectra for a large variety of hard
X-ray sources and determine the plasma temperature in the region of main energy release in Cyg X-1 and the

Seyfert galaxy NGC 4151.

Subject headings: gamma rays: theory — plasmas — radiation mechanisms: nonthermal — X-rays: stars

1. INTRODUCTION AND SUMMARY

Three radiation processes have been found to be of prime
importance in hot plasmas: bremsstrahlung, synchrotron
(cyclotron) radiation, and Compton scattering; in compact
enough plasmas, they are complemented by pair production
and annihilation. During recent years it has become clear that
the proper interpretation of the spectra of gamma-ray sources
as well as of the underlying physical processes is impossible
without the detailed accounting for Compton scattering. The
latter occurs in a variety of forms (thermal and nonthermal,
upscattering and downscattering) and includes such process as
inverse Compton scattering, Comptonization, reflection, back-
scattering, etc. For a review of these topics and some implica-
tions, see Brinkmann, Fabian, & Giovanelli (1990) and
Zdziarski et al. (1993b), where references to earlier work are
also given. The shape of the radiation spectra generated by
Comptonization in a plasma cloud of finite optical depth was
the subject of our previous papers (Sunyaev & Titarchuk 1980,
1985, 1989; Titarchuk 1987, 1988).

The main motivation that forced us to return to the problem
of Comptonization is a number of fine recent measurements of
the radiation spectra of the X-ray emitting AGN (Apal’kov et
al. 1992; Maisack et al. 1993; Yaqoob et al. 1993) and Cyg X-1
(Salotti et al. 1992; Grabelsky et al. 1993).

The observed spectra agree well with analytically derived
radiation spectra due to Comptonization of low-frequency
photons in isothermal plasma. The previous measurements of
Cyg X-1 showed that the plasma temperature in the cloud is
kT, ~ 26.5 keV and the optical depth of its disk with respect to
the electron scattering is 7, ~ 4 (Sunyaev & Triimper 1979;
Sunyaev & Titarchuk 1980). An attempt to interpret the recent
observations of Cyg X-1 and NGC 4151 yield smaller optical
depths (r, < 1 for Cyg X-1, and 1o, ~ 3 for NGC 4151) and
much higher plasma temperatures kT, > 50 to 150 keV. At
high temperatures, the effectiveness of the Comptonization
process increases substantially. As a result even at moderate 7,
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one has a Comptonization parameter

kT,
y~ p_— 2>1.

Therefore, in order to explain the observed spectra, whose
overall shape is far from Wien, one concludes that 7, < 1 (e.g.,
Cyg X-1). In this case the validity of nonrelativistic Comp-
tonization theory, (Sunyaev & Titarchuk 1980, hereafter ST80)
in the diffusion approximation is under some question. Thus
spectral formation from disks or plasma cloud of compara-
tively small optical depth at the high plasma temperatures
should be examined.

The present paper deals in detail with the following points:
(a) the general formulation of the Comptonization radiative
transfer problem and its reduction to the diffusion problem
over energy and space; (b) the time dependence of photon
escape from disk and spherical geometries; (c) the shape of the
radiation spectra, taking into account relativistic corrections in
the free electron cross section and the scattering kernel; (d) the
source of low-frequency photons; and (e) the recent high-
energy observations and their possible interpretation by
thermal Comptonization models.

Comptonization is the problem of energy exchange in the
scattering of photons off electrons. The average energy
exchange per scattering is determined by the relation between
the photon and electron energies. For a thermal electron dis-
tribution with temperature kT, and nonrelativistic electron
energies hv, (hv. kT, < m,c?), we have as follows:

(Avy 4T, — hv

v m, c?

When the photon energy hv is much less than the mean elec-
tron energy kT,, the photon gains energy due to the Doppler
effect, i.e.,
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In the opposite case, (hv > kT,), the photon loses its energy
because of the recoil effect.

In a finite medium (plasma cloud) two processes compete
with each other, and influence the formation of emergent
spectra: photon diffusion over space, and photon diffusion
over energy. The photons gain or lose energies in a random
walk around the plasma cloud. The Comptonization param-
eter

4kT,

e
Ve = copn,t
" om,c? €

determines the photon energy gain due to the Doppler effect
along a random trajectory with time duration t. Here n, is the
electron density and o is the Thomson cross section. The
photon distribution over the random walk time is controlled
by the plasma cloud boundary conditions (photons are not
scattered out of plasma cloud, see eq. [A8]). For a plasma
cloud with optical depth 7, > 1, the mean number of scat-
terings # ~ 13 and thus the mean Comptonization parameter

4kT,
m, c?

2.

y~

The most important case is when unsaturated Comptonization
spectra are formed (ST80), 3 <y <12 [1 <y ~(12/y) < 4].
The primary low-frequency photons with mean energy, hv,
(hvy < kT,) are distributed through the plasma cloud. Some of
them which suffer a number of scatterings u much less than the
average i, retain information about the initial spectral, angular
and space distribution. In principle, we can restore this infor-
mation by analyzing the observed X-ray spectrum. But the
photons which undergo a number of scatterings u much
greater than the average i, form specific spectral and angular
distributions which are mainly characterized by the plasma
cloud optical depth 1, and temperature kT,, and which are
almost independent of the initial distribution of the low-
frequency photons (Sunyaev & Titarchuk 1985, hereafter
ST8S).

For higher values of y, the Wien spectrum is established as a
result of the equilibrium between photons and electrons, and
therefore, this case is trivial.

In order to solve the Comptonization problem we should
distinguish two regions: (I) When the plasma cloud optical
depth 7, is greater than 1 and (II) When 7, is less than 1.

The first case is treated in §§ 2 and 3.1. The radiative
problem is reduced to the diffusion problem in energy space
and configuration space. For example, the drift of photons
along the vertical coordinate,

To
GTNe ’

gives rise to the photon trajectory length | = Hz,, 7, times
more than the vertical drift. Also, since there is no preferential
direction for photon propagation in a plasma cloud, the radi-
ation field is almost isotropic. The radiative transfer equation
for the intensity along a certain direction is replaced by the
equation for the intensity averaged over all photon directions.
The integral collision term of the radiative transfer equation,
along with the loss term, are transformed into the energy diffu-
sion term. The intensity space gradient term is transformed
into the diffusion space term for the average intensity, (see
details of the reduction of the radiative transfer to the diffusion

problem in Appendix A). Finally, the emergent spectrum of
X-ray radiation is obtained as a convolution of two functions:
One is the diffusion solution for the time evolution of the initial
low-frequency photon spectrum in the infinite medium (the
Cauchy problem solution) which was found by Kompaneets
(1956) for the nonrelativistic case (hv < m,c?), and the second
is the photon distribution over the escape time u = oyn,ct
(proof of this statement appears in § 2.1 and Appendix A). In
other words, the distribution determines the probability that
the photon escapes from the plasma cloud in the interval u to
u + 1. This is a well-known problem solved elsewhere (e.g.,
ST80; ST8S5).

In order to generalize the Comptonization problem for the
case of subrelativistic energies and plasma temperatures, we
should take into account the relativistic corrections introduced
into the diffusion coefficients of the energy and space operators
(Prasad et al. 1988; Shestakov, Kershaw, & Prasad 1988; § 2.1
and Appendix A, B in this paper). The diffusion coefficient of
the energy operator 7, is obtained by weighting the energy shift
with the Compton Scattering Kernel (CSK) (Prasad et al.
1988). The CSK is a result of integrating the Klein—Nishina
cross section for Compton scattering of an electron over a
relativistic Maxwellian distribution of electrons (Pomraning
1973). The inclusion of the relativistic corrections increases 7,
when the plasma temperature goes up. The corrected coeffi-
cient contains the additional temperature dependent factor
f=1+250 + --- (e.g, Prasad et al. 1988). Here O is a dimen-
sionless temperature normalized with respect to the electron
rest energy

kT
T m,c?

In the very hard tail (hv > 200 keV), photons are mainly scat-
tered in the forward direction and change their energy only
slightly. The Compton effect loses effectiveness, and hence the
coefficient #, drops.

The diffusion coefficient in the space operator ¢, is obtained
by averaging the cosine square of the angular variable § over
all photon directions. As an example, this equals to % for an
isotropic radiation field. This approximation is valid for non-
relativistic energies and temperatures. However, in the course
of a random walk, photons are getting harder because of
upscattering, the Klein—Nishina differential cross section
strongly deviates from the Rayleigh one, and the approx-
imation of isotropic radiation field breaks down. The space
diffusion coefficient is corrected by the transport factor A,
which takes into account the scattering anisotropy (Grebenev
& Sunyaev 1988; Shestakov et al. 1988). In particular, for sub-
relativistic energies and temperatures, Shestakov et al. (1988)
derive the asymptotic behavior of 4, as follows:

Igt=1-%z420+--- <1,
where z = hv/m,c.

We give here a short description of changes in the emergent
spectral shape caused by the relativistic corrections.

At small energies (hv < kT,) the spectrum becomes harder,
i.e., the spectral index drops as a result of the growth of the
energy diffusion coefficient 5,. Also, the hard energy tail (hv >
kT,) is steeper than what we have in the nonrelativistic case,
since all scattering processes in energy and space are
suppressed—the coefficient 5, decreases, and the coefficient
¢, = 4,,/3 increases along the photon energy axis. In § 2.1 and
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Appendix A, we give the derivation of the Fokker—Plank equa-
tion. It is the solution of this equation which determines the
emergent spectrum.

The next points should be emphasized: (i) Photons under-
going many more scatterings, u = o1 n, ct than the mean value,
u escape from the plasma cloud in accordance with the expo-
nential law, i.e., the asymptotic distribution over escape time
P, (u) oc exp (— Bu). The final spectral shape in the upscattering
case is determined by these photons only. Therefore, instead of
deriving the full solution which is too complicated, we find the
upscattering asymptotic solution of the Comptonization Sta-
tionary Equation (this is obtained from the Fokker—Plank
equation (9) and equation (10) through a Laplace transform-
ation with the parameter §, (eqs. [15] and [29]). (ii) The shape
of the emergent spectrum is calculated numerically and ana-
lytically by solving equation (15). For the numerical solution
we use the Run method for the conversion of the three diago-
nal matrix operator. The analytical solution combines some
modification of our previous spectrum, ST80 and new rela-
tivistic hard tail in the form F, oc x3 ~b1e~*(1 +b0) (for details see
§ 3.1).

In §§ 2.1 and 3.2 we discuss the second problem of upscatter-
ing in the small optical depth case. Even in this case the X-ray
spectrum is created by photons which suffer many more scat-
terings in plasma cloud than the average number (ST80; ST85).
However these photons produce the specific radiation field,
with the specific angular and space distributions which are
only determined by the plasma cloud optical depth and are
independent of energy (ST85), ie., photon random walk
around plasma cloud occur independently on photon energy
change (gain). Thus the upscattering spectral formation in the
case of small optical depths can also be considered in terms of
the Fokker—Plank approach when the photon energy change is
weighted by the Compton scattering kernel (CSK) over photon
directions and the photon scattering distribution. All previous
calculations of the diffusion coefficients (e.g., Prasad et al. 1988)
are obtained for isotropic radiation field distribution and
therefore they are not valid in our case. The structure of the
radiation field created by photons which undergo repeated
scattering is quite different from isotropic. Most photons are
collimated along the longest size of the plasma cloud (in spher-
ical geometry this is along a diameter; in disk geometry it is
along the disk). Therefore, we can simplify the radiative trans-
fer problem by considering only scatterings along the forward
and backward directions. However photon scatterings off elec-
trons in the forward direction does not produce any change of
in the photon energy. Only backward scatterings change the
photon energy. When the plasma temperature grows, the
Klein—Nishina phase function becomes sharper along the
forward direction, and consequently, the backward part is
more suppressed. As a result, Compton scattering is not so
efficient in the collimated field as it is in the isotropic field, and
hence, the temperature amplification factor of the energy diffu-
sion coefficient 7, is weaker in the former case than the latter
one. The ratio of two factors is

Jea 1+ (19/8)0 ...
fio 143580 ...°

Here, f,,, and f,,, are the temperature factors of the energy
diffusion coefficient #, in the collimated and isotropic cases
respectively. This difference of the temperature dependences
changes dramatically the power law spectral slope estimates.
For example, for the spherical plasma cloud case with optical
depth 7, = 0.5 and kT, = 250 keV, we get the power law spec-
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tral slope a,,, = 0.60 instead of the isotropic value a;,, = 0.43.
The Monte Carlo calculations (Titarchuk & Hua 1994;
Pozdnyakov, Sobol, & Sunyaev 1983; Zdziarski 1986) confirm
our Fokker—Plank approach of the Comptonization problem
for the optically thin case.

Self-consistent hydrodynamic equilibrium calculations
result, in a number of cases, in a nonisothermal temperature
distribution. The simplest realization of such nonisothermality
is the sandwich model (Sunyaev & Titarchuk 1989; Haardt &
Maraschi 1991): A cold layer produces low-frequency photons
which are subject of Comptonization in hot layer (there is no
lack of mechanism to heat that layer, see e.g., Guessoum &
Kazanas 1990). If the temperature distribution of the hot
plasma is more or less homogeneous, the resulting spectrum
can be described by some mean temperature (Titarchuk 1988).
Section 4 refers to the sandwich model. We derive there the
equation for the self-consistent determination of the low-
frequency photon energy. The astrophysical applications of the
developed theory to recent high-energy observations are
shown in § 5. A full survey of the conclusions is given in § 6.

2. RADIATIVE TRANSFER THEORY

2.1. Basic Equations

The photons which undergo, on average, many more than
one scattering, independent of the optical depth of the plasma
cloud, produce the typical diffusion field of radiation and can
be described by the diffusion (Fokker—Plank) approximation
(see for details Appendix A and Shestakov et al. 1988). In this
section we consider the case with the plasma cloud optical
depth 7, > 1 and we present all calculations of the appropriate
diffusion coefficients. The diffusion coefficients are obtained as
a result of averaging over all solid angles which is relevant only
in the large optical depth case. The transport scattering cross
section used in the coefficient of the spatial diffusion is D =
¢/30,n, takes into account that fact that small angle scat-
terings weakly change the photon trajectories. The transport
cross section-of scattering by electrons is given by

_ Ot — _ __Y_ ’

where do (v — V') is the differential cross section of Compton
scattering averaged over the Maxwellian distribution (e.g.,
Pomraning 1973; Shestakov et al. 1988), v and v’ are the fre-
quencies of photons before and after the scattering, 9 is the
scattering angle, o1 is Thomson cross section and

kT,
m, c?

® =

is the dimensionless plasma temperature.

The factor 4, can be written with an accuracy of better than
2% in the range hv <1 MeV for ® =0, by the formula
(Grebenev & Sunyaev 1987)

22(z) =1+ 2.8z — 04422, Q)

where z = (hv/m,c?). It is worthwhile to point out that A, is
also a weak function of temperature (see Fig. 2 in Shestakov et
al. 1988), and we can take into this dependence as follows

A(2) = [1 + 2.8(1 — 1.1@)z — 0.4422] . (2a)

The time evolution of the photon energy is determined by
the Doppler and recoil effects through the energy diffusion
coefficent #(z, ®) which is found by solving the differential
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equation (Prasad et al. 1988).

n—© f;—” =z-2»= Jw (¢ —2dSz > 2,0). (3
zZ 0

Here S.(z — 2/, ®) is the scattering kernel of the Compton
kinetic equation (e.g., Pomraning 1973; Shestakov et al. 1988).
The exact analytical formula for the diffusion coefficient #(z, ®)
was derived by Prasad et al. (1988). But with accuracy 1% in
the range kT, < 100 keV, #(z, ®) may be approximated by the
formula (see Cooper 1971)

_ z* /o(®)
e = e+ 112 [1 Ay 10.22] -9
Here f(®) is

1o(©) = 2.50 + 1.8750%(1 — ©) . )

In the diffusion (i.e., Fokker-Plank) approximation (7, > 1)
the problem of radiative transfer can be reduced to the solution
of the differential equation (see the proof of this statement in
Appendix A, eqs. [A6] and [A8])

_ By(x, DA '(x8)

3 ()
X

Lyn+ L% =

with appropriate boundary conditions (see Appendix A, eq.
[A8] and also ST80; ST85; Grebenev & Sunyaev 1987).

Here
_04;'(x8) 3 2
Lv - xz 6x ”(x®’ ®) ax + E B (7)

and space operators L? for spherical and plane geometries are
presented by equations (20) and (A9) respectively. Equation (6)
is written using the dimensionless variables 7 = 7 and x =
hv/kT,; n(x, T) = I,c%/2v® is the photon occupation number in
phase space and B(x, ) is the primary source distribution.

The first term of the left-hand side of the equation (6)
describes the photon dispersion and shift due to Doppler and
recoil effects on electrons. The second relates to spatial diffu-
sion.

If we suppose that this term

ofe, ) = Dot Ve ':0)

=Y ,

i.e., is factorable into functions of x and 7 alone (in fact any
such term is expended in series over the eigenfunctions of the
space operator L) then it is easy to prove that the solution of
equation (6) can be represented by the following convolution
(see the proof in Appendix A):

n(x, 1) = J N N(x, wR(z, u)du . (8)

N(x, u) is the solution of the time-dependent problem for the
energy space with x > 0:

ON
—=L,N, 9
o = Lo ©)
having as initial condition
N(x, 0) = Y(x) . (10

On the other hand, R(z, u) is the solution of the time-dependent
problem in configuration space 0 < t < 27, for a disk and in
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0 < 1 < 7, for a spherical plasma cloud given by
OR
— =L¥R 11
= = Lt (11)

with the initial condition
R(z, 0) = (1) (12)

and with the proper boundary condition in configuration
space. (e.g., Appendix A, eq. [A8]).

If r(7) equals the first eigenfunction of the space operator L,
which is the case of interest for Compton upscattering the
solution of equations (11) and (12) can then be written

R(z, u) = R,(7) exp (—pu) . (13)

The main solution n(x, t) of equation (6) is then in the very
simple form

n(x, 1) = ny(x, 1) = Rl(‘l:)J~°0 N(x, u)e #*du = R(T)N (%) .
o

(14)

In the general case the solution of the equation (6) is presented
by series of the form presented in equation (14) corresponding
to the different eigenfunctions L?, but the main fraction in this
series is determined by the first term, n,(x, 7), if the photons of
the primary sources By(x, t) have low energies (hv < kT,).

The Comptonization problem for this case reduces to
solving the Comptonization stationary equation (CSE) for
N,(x) (compare with Chapline & Stevens 1973; Shapiro, Light-
man, & Eardley 1976; ST80) given by

L,N; = BN, = —¥(x). (15)

In fact the above equation results from a Laplace transform-
ation of the time-dependent problem (9) and (10).

The meaning of the convolutions in equations (8) and (14) is
that the process of photon energy gain and the process of the
photon random walking of photon through the plasma cloud
should be considered independently. Similarly, we show in
Appendix A this is also valid for photons in plasma clouds of
arbitrary optical depth. The fact is that the X-ray spectrum is
created by photons which suffer many more scatterings in
plasma cloud than the average number (ST80; ST85).
However, these photons produce the specific radiation field,
with the specific angular and space distributions which are
only determined by the plasma cloud optical depth and are
independent of energy (ST85), ie., photon random walk
around plasma cloud occur independently on photon energy
change (gain). Thus the upscattering spectral formation in the
case of small optical depths can also be considered in terms of
the Fokker—Plank approach when the photon energy change is
weighted by the Compton scattering kernel (CSK) over photon
directions and the photon scattering distribution.

In the general case, the asymptotic behavior of the photon
distribution over the escape time is also described by an expo-
nential law, exp (— Bu) (see below eq. [17]). Hence we find that
equation (15) would be valid even for small optical depth of the
plasma cloud but with the appropriate correction of the diffu-
sion coefficient #, for this case (see § 3.2 and Appendix A, B).

The second term of equation (15) which-takes into account
the spatial escape rate of photons from the plasma cloud, is
proportional to the occupation number N, with the coefficient
B. It implies that the fractional number of photons which
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random walk out of the plasma cloud becomes e~ # less with
each collision. On the other hand we know that this number is
equal to the first eigenvalue p; of the space scattering operator
L (see eqs. [25] and [26]), i.e., thus

B=1n(1/p,). (16)

Actually, the primary source space distribution By(t) is
expanded in the generalized Fourier series over the eigen-
functions {g,(r)} of the scattering operator L

By(r) = _Z,l a9; -

Using the iterative method of successive approximation we
obtain the term v, responsible for photons which have under-
gone k-scatterings in the plasma cloud

)
vde) = LBy = Z a;ptg; -
i=1
Because of the sequence of the eigenvalues {p;} is in decreasing
order (it monotonically converges to zero), ie., p,>
p,>'>p;—0 when i >0 we get that with increasing k
the first term is dominant in v, that is

1) =~ alP’igl(T) .

It is worthwhile noting that relationship (16) is valid for any
optical depth of the plasma cloud and reduces to f=1
— p; € 15 2 only in the diffusion case because of (1 — p,) o
752 < 1. In the optically thin case p, oc 7, and thus f ~
In(1/7,).

The solution N,(x) determines the shape of the output spec-
trum which is the same throughout the plasma cloud. Gener-
alizing the above statement one can say that for an isothermal
(or with a smoothly distributed temperature) disk, the shape of
the hard radiation spectrum does not depend on the low fre-
quency photon source distribution, and it is the same at any
point inside the disk (independent of the t-coordinate) (ST85
and Titarchuk 1988).

2.2. Distribution Law of the Number Scattering

As we display, the problem of the X-ray spectral formation
in a hot plasma cloud is closely connected with the distribution
law of the number of scatterings. It is important to note that
the time-dependent function R(z, u), in equations (11) and (12)
determines the distribution of photons over the dimensionless
time u they spend in a plasma cloud (scattering number).

The exponential tail of the distribution over the scattering
number is a typical feature of the problem of photon escape
from a limited region of space. This asymptotic behavior takes
place in plasma cloud with arbitrary density distribution and
source distribution (ST80). The probability that a photon
undergoes u scatterings where u > i (where # is the average
number of photon scattering), is given by the asymptotic rela-
tion:

P, (w) = A@, 7o) exp (—pu) , (17)

where the normalization constant A(#, ) depends on the dis-
tribution of low-frequency photon sources, By(z), inside the
plasma cloud (ST80; ST85). In the diffusion approximation
(applicable to the case where the optical half-thickness of the
disk, 74, is much greater than 1), the parameter § is given by the
relation B = 1%/3 and represents the first eigenvalue of the dif-
ferential operator LY = (d?/dt?), when the boundary condi-
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tions appropriately describe photon escape from the disk. It is
easy to show (see, e.g., ST85) that A, is the solution of the
transcendental equation:

tan Aty = TR (18)
When 7, > 1 this equation has the asymptotic solution
7!
M=t )
and therefore:
7.[2
B for a disk . (19)

T 12(zq + 2/3)?

The appropriate diffusion operator in the case of a spherical
homogeneous plasma cloud reads

110 ,0
L =355 5" (20)

and its eigenvalues are determined by (see ST80)
At
1—-(3/2)r,°

Here 1, characterizes the optical radius of the spherical cloud.
The asymptotic solution of this equation, for 7, > 1, is 4, =
n/(to + %),and so

tan Aty = 21

T 3(ze + 2/3)2

In order to generalize this photon diffusion approach for the
case of arbitrary optical depth 7,, we replace the diffusion
operators L with the radiative transfer operators L, (see
Appendix A and Chandrasekhar 1960) describing photon scat-
tering in the plasma cloud of arbitrary optical depth. For the
disk (plane) geometry this operator is

B for a sphere . (22)

210
Lt=%y dvE(|t—7v))—E=L,—E, 23)
0
while for spherical geometry it is given by
70
L = %j dv't[E(t—7T|)—E(t+7)] —<E=L,—<E.
0

24

Here E is the identity operator and E,(z) is the exponential
integral of the first order. Both diffusion operators are derived
from equations (23) and (24) under the assumption of o, > 1.

The space radiative transfer equations for the source func-
tion B(t) are written by means of operator L. in the following
form:

B(t) = L B(t') + By(t) for a disk , (25)
©B(t) = L [7B(t')] + ©B,(t) for a sphere . (26)

The solution of equations (25) and (26), obtained by successive
approximations over scattering events produced the distribu-
tion laws of the number of scatterings, P(u), and the asymptotic
escape dimensionless rates 1/ (see, e.g., ST85).

The f values which were presented in Table 1 and Figure 2
of ST8S5 are given for the sake of completeness in Figure 1 here.
These values are practically for any optical depth for disk and
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Disk geometry
————— Spherical geometry
[ ---- Disk analytical approximation N
[ - Spherical analytical approximation ™\

8 — VALUES
0.1

0.01

L1 n " L P | n n L La 1
0.1 1 10
OPTICAL DEPTH 7,

F1G. 1.—p-dependence as a function optical depth for disk geometry (solid
line) and spherical geometry (dashed line). The analytical approximation f-
dependence egs. (27) and (28) are displayed by the dash-dotted curve (disk) and
the dotted curve (sphere).

spherical geometries. As it can be seen, by comparing equa-
tions (19) and (22) to the results presented in Figure 1, for
1o > 3 or 4 the diffusion approximation gives § with a satisfac-
tory degree of accuracy. ST8S (see also eqs. [27] and [28])
presents analytical expression for the exponential law for case
of small optical depth, i.e.,

:| for a disk , (19a)

2
f=ln [310 In(1/270)

and

B = lngj— for a sphere . (22a)

0

All these analytical estimates are in excellent agreement with
computational results (see Table 1 of ST8S5). In order to present
these computational calculations in an analytical form we
derive the next approximations of §, which incorporate asymp-
totic expression for both small (egs. [19a] and [22a]) and large
(egs. [19] and [22]) optical depths,

2

- [ _ _-1.351 -3.700] 10
B 12(cq + 23 (1—e ) + 0.45¢ n310
for a disk , (27)
2 4
B n 3 (1 _ e—0.7to) + e—1.4toln__

T 310 + 2/3) 3¢,
for a sphere . (28)

The results of comparison between analytical and computa-
tional results of f are given in Figure 1.

It is worthwhile noting, that the forms of the diffusion oper-
ators L = $(d/dt?) and L, in equations (23) and (25) are inde-
pendent on the density distribution throughout plasma cloud if
the homogeneous atmosphere height of the density distribu-
tion is much less than the curvature radius of the plasma cloud
layers. Thus the B-estimates, equations (19), (19a), and (27) are
valid for any such density distribution.
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3. EMISSION SPECTRUM
3.1. Diffusion Regime (1o > 1)

As we emphasized above, the X-ray spectrum of the upscat-
tered low-frequency photons in plasma clouds is found as a
result of solving of Comptonization stationary equation (CSE).
The homogeneous CSE (15), i.e., with y(x) = 0 is transformed
to

x2N7 + x[x(1 + €) + 4]N; + (x’e + 4x —y))N; =0. (29)

Here € = p//p and p = n(x®, ®)/z*, (see eq. [4]), i.e.

e 4.6 + 22x@)®
T U T T 114620 + LIxO)’ (30)
_ B
y= ou (3D
and
b (32)

o = O + fo(@)]

Because y and € depend weakly on the dimensionless energy x
for x < 2, the solutions of equations (29) are expressed approx-
imately by means of the Whittaker functions through the
expression Y, 4(x) which have convenient integral representa-
tion (see, e.g., Abramowitz & Stegan 1966). Thus

Ni(x)=x"2?exp [— u —th)x

]YZ,J9/4+’yE(1 +p)x] . (33)

In the case of low-frequency primary sources, i.e., By(x, 7) =
d(x — xo)ry (1), with xo < 1, the spectrum of photon emerging
from the plasma cloud is described by the simple formula

ao(ao + 3) 1 X 3+ao
Fyx,xg)=————7"—|— h <x< X,
(%, Xo) 2y 73 g \ng when 0 < x <X,

(34)
and

e (x\ ™[R N x+1)f e dt
F(x, xo) = H— | —
(%, Xo) = ao(ato + 3) Xo (xo) T2 + 4)

where x, > x>x,. (35)

Here I'(x) is the gamma function, x,, = 0.5 + y, and

ax) = /9/4 + y(x) — 3/2, (36)
oo =/9/4 + 70 — 3/2. 37

The values of B are obtained by solving the equation f§ =
B(z,) for given optical depth ;.

The solution of the Comptonization problem, equation (29)
is characterized by a couple of asymptotic forms: the first one
is low-frequency asymptotic form, F, oc x % when the dimen-
sionless energy x < a, and the second one is high-energy
asymptotic form for x > &, which is determined by Wien law
F,oc x3¢™ in the nonrelativistic case. In order to find the
spectrum F(x, x,) for high energies (x > x, and x > a,) in the
relativistic case we present the occupation number N(x) in a
factorized form N,(x) = e *e /™. Then N,—equation (29)

while
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reduces to Riccati’s equation for f(x):
x2fu + (4X _ x2)f/ _ x2 12
= —yo[l + 7.40¢(®)x + 13.540%P(®)x*], (38)
where ¢(®)=1—0420 and P(®)= 1-1.05. Deriving this
equation from equation (29) we neglect e-term with respect to 1
and the third and the fourth degree terms of z (z = ®x) in
y-polynomial with respect to quadratic polynomial of z. The

solution of equation (38) can be represented by the following
asymptotic series
@ b"
f(x)=box+b11nx—ngzm, (39)
with coefficients b, given by

V1 + 54.160%P(@)y, — 1

_ 4b, + 7.404¢(B)y,

by = b,

2 ’ 1+ 2b, ’
3b, — b? +y,
b, = 1+2b, ° (40)
and
b _(6_2k)b2(k—l)'-2Zi";l1 b(Zk—l—i)bi

@e-1 = 1+ 2b, ’

b — (5 _ 2k)b(2k—1) - bl% _ Zf=_ll b(2k—i) bi
* 1 + 2b,

fork=23... (41)

Finally we obtain spectrum F(x, x,) for x > x, through the
formula

F(x, xo) = cox3e > /™

¢} b
— 3—=bi1,—x(1+bo) -_n
=cox3 e exp Y —
W= (n—Dx !

~ ¢y x3b1gT X1 +bo) 42

The coefficient ¢, is determined by the continuity between the
two parts of the spectrum (eq. [35] and eq. [42]) at x ~ x,. Itis
worthwhile noting the difference between the hard nonrelativ-
istic and relativistic tail. Instead of a Wien tail, x3¢~*, in the
nonrelativistic case, in the relativistic case we have the steeper
tail x3~b1g~*(1 *bo),

The spectra resulting from the Comptonization of soft
photon radiation with hv, = 1073kT, in high-temperature
plasma clouds for various values of kT, and the parameter f
are obtained by numerically solving equation (15), (or eq. [29]).
A comparison of these solutions with the nonrelativistic
models of ST80 are presented in Figure 2. It is seen that the
nonrelativistic spectra are satisfactory for temperatures kT, <
30 keV and energies hv < 50 keV with optical depth of plasma
cloud 7, > 2. There is also shown in Figure 2 comparison
between the analytical approximation of equations (34), (35),
and (42) and the exact numerical solution of equation (29).
Figure 2 shows that the new analytical formula works even
much better than the modified nonrelativistic approximation
of ST80 and fits excellent the numerical solution of equation
(29) in the whole temperature range up to 100 keV. The modi-
fied nonrelativistic approximation of ST80 is determined by
equations (34)-(37) with x, = co and y =y, (the latter is
defined by eq.[32]). In order to test the accuracy of the numeri-

cal solution of equation (29) a couple of nonrelativistic solu-
tions are shown in Figure 2. These include the modified ST80
formula for the monochromatic soft photon radiation hv, and
the numerical solution of equation (29) with e = 0 and y = y,
when the soft radiation is described by a blackbody with tem-
perature kTy = hvy/2.7.

3.2. Optically Thin Case (1o < 2)

In the case of small optical depths 7, <2 and high tem-
perature kT, > 100 keV the radiation field of photons which
undergo repeated scattering form the specific angular distribu-
tion. ST8S discuss details of the angular distribution and polar-
ization of photons escaping from optically thin layers. Here 3
refers to the angle between the normal to the disk plane and a
given direction and ¢ = cos 9. The main features of the dis-
tribution are as follows: (i) The intensity increases monotoni-
cally from ¢ = 1 to & = 0. (ii) The radiation flux as product of £
and intensity I in given direction has its maximum at £_,, =
(r/2)!3 < 1. (iii) It is mainly photons with & & 7o1n(1/217)
that stay in optically thin disk. Radiation from the optical disk
generates a knife beam, it escapes from the disk at angles close
to the disk plane.

Thus we can formulate the problem of the determination of
the energy diffusion coefficient of Fokker—Plank equation in
the case the knife beam radiation field. In appendix B we
present the solution of the problem. In that approximation the
photons gain energy in the course of random walk when they
scatter in the backward directions. The asymptotic form of the
energy diffusion coefficient (z, ®) at energies hv < kT, is found
through the expression

L1 +(19/8)0 + -
1+ (1580 + -

Note that such relative weak temperature dependence of
n(z, ®) is explained by weakening of the Klein—Nishina differ-
ential cross section in the backward directions with increasing
plasma temperature. The transport coefficient 4, (see eq. [1])
becomes smaller and it is almost constant, 1 for the whole
high-energy range. In the spherical geometry the preferential
directions of radiation propagation are concentrated along
radial directions. The fraction of photons H(£,,1) which
escape between ¢ = ¢, and £ =1 equals to H(¢, 1) =1 — &}
— 0.757o(1 — &3). Here & refers to the cosine of angle between
the radial direction and a given direction. The last relation
shows the fraction of photons leaving plasma cloud and
detained (because of scattering) at the directions with & < &,
decline as £3 and &3, respectively.

The analytical approximation (34) and (35) fits successfully
Monte Carlo calculations (Titarchuk & Hua 1994; Pozdnya-
kov et al. 1983; Zdziarski 1986) and y and 7y, used in the
computations of o« and «, (eqs. [36] and [37]) could be
replaced by the following expressions

7z, ®) ~ z

“3)

_ Bl + (15/8)@]
o= o1 + (19/8)0] °

i.e., the temperature dependence of the space diffusion coeffi-
cient 7, can be replaced by that weak temperature dependence
which follows from equation (43). The equation (35) is com-
puted for all dimensionless energies x > x,, i.e., x,, = 0. The
results are given in Figure 3 for the plasma temperatures
kT, = 100, 500 keV and for the plasma optical depths 7, =
0.1-2.

Y =7o(1 + 4.6z + 1.1z%) and (44)
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FIG. 2—(a) Comparison of the outgoing photon spectra for plasma cloud with electron temperature kT, = 10 keV for the modified nonrelativistic
Comptonization model ST80 (egs. [34]-[37] with x, = co and y = y,, the latter is defined by eq. [32]) and the outgoing spectra calculated with relativistic
corrections (egs. [29], [34], [35], and [42]). (b) Same as (a) for kT, = 25 keV. (c) Same as (a) for kT, = 44.1 keV. (d) Same as (a) for kT, = 50 keV. (¢) Same as (a) for
kT, = 75 keV.(f) Same as (a) for kT, = 100 keV.
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F1G. 3.—(a) Outgoing photon spectra for plasma cloud electron temperature kT, = 100 keV in the optical thin case with optical depths in spherical geometry
1, = 0.1-2 calculated with relativistic corrections (egs. [35] and [44]). (b) Same as (a) for kT, = 500 keV.

In the conclusion of this section we want to summarize two
things: (i) The analytical and numerical relativistic solutions of
equations (15) and (29) are much better than ST80 and they
approximate quite well the Monte Carlo results (Titarchuk &
Hua 1994) for f < 0.6-0.7, i.e., for the optical depth in spher-
ical geometry more than 1 and for the optical depth in disk
geometry more than 0.5 and for the temperature range up to
150 keV. It is important to point out that the diffusion coeffi-
cient #(z, 6) of the kinetic equations (6) (or egs. [15] and [29])
should be replaced by the exact solution of Prasad et al. (1988)
instead of using the formula (4) for kT, > 100 keV. (ii) In the
case of relative small optical depth > 0.4 (the optical depth in
spherical geometry t, <2 and the optical depth in disk
geometry 7, < 1) and high temperatures up to 500 keV the
analytical approximation (35) along with the appropriate cor-
rections for the parameters y and y, (eq. [44]) works fairly well
(Titarchuk & Hua 1994) and could be used as a model in data
analysis.

Below we show how this analytical approach is applied for
interpretation Cyg X-1 data.

4. SOURCE OF LOW-FREQUENCY PHOTONS

Sunyaev & Titatchuk (1989) (see also Paczynski 1978; Ion-
son & Kuperus 1984) formulated the problem of the inter-
action of radiation between hot and cold material in the
framework of a sandwich model. Later this problem was also
considered by Haardt & Maraschi (1991) with application to
AGNs, and by Haardt et al. (1993) for the interpretation of
OSSE observations of Cyg X-1. We shall present the detailed
theory, numerical calculation and astrophysical applications of
this model in a forthcoming paper (Titarchuk 1994). Here we
will only present some very simple estimations which directly
follows from the presence of a hot region in the vicinity of
relatively cold material. As an example of a cold material we
can consider an accretion disk with a surrounding hot corona
or some part of a neutron star surrounded by a hot boundary
layer.

We assume that the low-frequency photons are produced in
the lower cold layers due to heating of cold material by the
hard photons emerging from the hot region. Some fraction of
the luminosity L irradiated outside therefore is deposited in the

cold material because of the recoil effect on cold electrons and
photoelectric absorption. The first process is more important
for high-temperature regions with kT, > 20 keV, as may be
observed for Cyg X-1 (see, e.g., Sunyaev & Triimper 1979;
ST80; Frontera & Dal Fiume 1992; Grabelsky et al. 1993) and
for NGC 4151 (Maisack et al. 1993). The second process (i.e.,
photoabsorption) mainly defines the soft photon production in
the cloud layers of the accretion disks in galactic sources when
the temperature of the hot region is around a few keV (see, e.g.,
White, Stella, & Parmar 1988).

For simplicity we will consider only the recoil effect as the
main source of the energy deposition in the cold material. This
deposition flux, which equals the soft photon energy flux L, is
determined by the expression

_(1-AL
-5

Here A is the albedo of the cold material, illuminated by the
hard photon flux incident from the hot region. The formula for
albedo can be obtained if we assume that the incident radiation
spectrum F, has the specific upscattered shape given by equa-
tion (23) in ST80 and if we use the formula for the monochro-
matic albedo (Titarchuk 1987)

L, 45)

T
1—d,= |~
RVE)

Then we can write
A= j3°(1 — A)F, dv
¢ F,dv

_[r kT, T(3/2 — I(a + 4.5) (46)
TN 3m,A TR+ 4T — o)
To derive this formula we have used the method of integration
presented in chapter 7.3 of ST85, assuming a spectral index
o < 1. The case « < 1 contains the solution set of x, < 1 for
recoil effect deposition. Another relationship between L and L,

follows from the equation for the enhancement factor d(a) due
to upscattering of photons (ST80; ST85)

L _ e+ I+ AT —a)
Ly Ao = T2 + 4) SIS

1
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Excluding the ratio (L/L,) in the system of equations (45) and
(47) and using equation (46) we derive explicit equation for x,

_ [1 [T, TG/2 — )l + 4.5)(@a(x + 3)]1«1 =
T2 3me TG/202x + 4) :
(48)

The values of x, have to satisfy two conditions, namely x, < 1
and 1 — A < 1. In Figure 4 the values of x,, are plotted versus a
for various plasma temperatures. For smaller kT, the set of the
admissible a is shifted to smaller values and the left boundary
of this range is determined by the evident inequality xo(a) < 3.

For example in the case of Cyg X-1 (see below and also
Haardt et al. 1993) kT, ~ 150 keV and the relevant « obey the
condition « > 0.5. From the right side the spectral slopes are
limited by the equality & = 1 because in this case the enhance-
ment factor (ST80) is

L 4 1
z; = gln;(-) (49)
but on the other hand (see eq. [45])
2
_l:_= 2 _ re) /3m,c ﬂni (50)
Ly, 1—A TGS\ #kT, 5 x,

Comparing these equations we obtain that L/L, as deter-
mined by equation (50) exceeds (L/L,) derived from equation
(49) because

re) [3m,c?
T(5.5 \ 7kT,

In other words, the deposition energy due to recoil effect in
cold layer is so small that the produced soft photon radiation
L, cannot be upscattered to the output radiation L because of
the values of Comptonization parameter y ~ 12/y <3 too
small.

Taking into account free-free absorption for the albedo cal-
culation we assume that more energy could be deposited in the
cold material and consequently we shift these estimations to
larger values of « (and thus to smaller values of ).

For given values of a, xy, and luminosity L, we are able to

D e S s S S e B S S S S B S A S B S A A RN
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50

0.1
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™ T

.
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o \ -
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Spectral slopes «

FiG. 4—Set of x, vs. « is presented as a function of plasma temperature
kT,

’
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estimate the size of the soft photon emission area S, using
equation (47)
27kT\' " L
S = . 51
( KT, ) d0)oT? G

Now we derive the equations for the enhancement factor L/L,,
the energy of the soft photons x, and the size of the soft photon
emission area S with an assumption of the spectral shape of the
relativistic upscattering hard tail of equation (42). Thus for the
flux averaged albedo we can write

{$(1 — A)F,dv n kT, T(6+ 3/2)

—A= ~ [= . (52
1-4 (S F,dv 3m,c?d®TG+ 1) (52)
Here F, ~ c, x’¢ ™, (see eq. [42]) and hence d = 1 + b, and
d = 3 — b,. In addition to equation (45), L and L, (L, =1 in

eqs. [34] and [35]) are related by the expression for the
enhancement factor due to the upscattering of photons

L Iré+1)

L—0=J; dex'zco—?-rl—. (53)

As we have mentioned before the coefficient ¢, is determined
by the continuity condition between the two parts of the spec-
trum (eqs. [35] and [42]) at x ~ x,,:

)
0>l ‘5“)

Eliminating L and L, from the equations (42) and (53) and
using the equation (52) we find at once the frequency of soft
radiation

. [ 1 [T, e "0 + 32glao + YO0 o
o 2 3me cz x:‘o+6d6+3/2(2a0 + 3) .
Therefore, by knowing the parameter § and the temperature

kT, and using equations (45) and (52) one can calculate the
temperature of the soft photons

and the size of the photon emission area S:

1 [z kT, T6+32 L
S=nR*~- [-—¢ —. 56
e a3 mc? dTG + 1) oT§ 6

Equations (55) and (56) (also eqgs. [45] and [51]) hold provided
that x, < 1and oy < 1.

5. ASTROPHYSICAL APPLICATIONS

Now we illustrate briefly the relevance of the above model to
current high-energy observations by OSSE and GRANAT. A
more detailed analysis of the relevant data will be presented
elsewhere (Titarchuk & Mastichiadis 1994).

5.1. Cyg X-1

There is a number of models to explain the hard radiation of
Cyg X-1 (see, e.g., the review by Liang & Nolan 1984). One of
the most popular is the Comptonization model according to
which low frequency photons upscatter on hot electrons, thus
producing the observed hard spectrum. The solutions obtained
in § 3 allow one to estimate the characteristics of the hard
photon emission region, the electron temperature, the optical
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depth and the size of the upper hot layer, and also to determine
the soft photon energy produced in cold layers of the accretion
disk situated below the hot region.

The shape of the emission spectrum emerging from the
plasma cloud is described by equations (35), (44) and depends
only on two parameters f, and the value of the temperature
kT,

Figure 5 shows the data obtained by the EXOSAT,
GRANAT, and OSSE observations of Cyg X-1 (for details on
the data see Done et al. 1992, Salotti et al. 1992, and Grabelsky
et al. 1993). These are compared with calculations made by
Haardt et al. (1993) for the ST80 model with kT, = 63 keV, and
7, = 2 and by Haardt & Maraschi (1991), using a Monte Carlo
sandwich model with kT, = 153 keV and 7, = 0.3. Also shown
are the analytical results obtained from equations (35), (44)
with kT, = 153 keV and f = 1.02 and all the parameter values
kT,, B correspond to the best-fit values. The above value of
corresponds to the half-thickness of the disk 7, = 0.15 (74 =
7,4/2); for spherical case it corresponds to z, = 0.62. The com-
parison of the analytical best-fit with Zdziarski’s analytical
approximation (Zdziarski 1986) with kT, = 153 keV and 7, =
0.62 is also given in Figure 5. None of these fits don’t show the
discrepancy between the theoretical curve and the data in ener-
gies less than 30 keV presented by Haardt et al. (1993) which
they try to explain in terms of the reflection model, i.e., that the
gap might be filled in by photons reflected from the underlying
cold matter of the accretion disk.

Equations (48) and (51) can be used to estimate the energy of
the soft photons hv, as well as the emission region area S. As
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FiG. 5—Data obtained during EXOSAT, GRANAT, and OSSE observa-
tion of Cyg X-1 (Done et al. 1992; Salotti et al. 1992; Grabelsky et al. 1993).
These are compared with calculations made by Haardt et al. (1993) for ST80
model with kT, = 63 keV and t, = 2 (histogram) and by Haardt & Maraschi
(1991) for a Monte Carlo sandwich model with kT, = 153 keV, and 7, = 0.3
(dashed line) also with analytical results obtained with egs. (35) and (44) (solid
line), with kT, = 150 keV and B = 1.02, which corresponds to the half-optical
thickness of the disk 7, = 0.15 (1o = 7,/2) or 7, = 0.62 in spherical geometry.
The dash-dot-dot-dot line presents the Zdziarski (1986) analytical approx-
imation for the given parameters kT, = 153 keV and 7, = 0.62. All parameter
values kT, 7, B correspond to the best-fit values.
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long as these equations are obtained with the approximation of
the ST80 model (i.e., without relativistic corrections), we use
the best-fit parameters of ST80 for such estimations: the spec-
tral slope a = 0.9 and kT, = 75 keV. The temperature value
corresponds to the upper fit value and differs by 20% from the
best values. We choose this temperature in order to fill the gap
between the data and the theoretical model points in the hard
energy region E > 300 keV.

Then the blackbody temperature of soft photons of 110 eV
obtained from equation (48), implies an area S = 10> cm? or a
radius of the emission region of ~ 14 Schwarzschild radii,
which for a Cyg X-1 luminosity equals to 10*7 ergs s~ ! and
mass of to 10 solar masses.

5.2. NGC4151

The recent OSSE observations of Seyfert 1, NGC 4151
(Maisack et al. 1993) represent the most sensitive observations
of this object in the energy range from 60 keV up to 1 MeV.
The emission spectrum of NGC 4151 is supposed to be the
typical Comptonization spectrum formed due to upscattering
of ultraviolet radiation reproduced in the cold material of acc-
retion disk (see, e.g., Dermer, Liang, & Canfield 1991).
Zdziarski et al. (1993a) show that the OSSE (Maisack et al.
1993) and the Ginga (Yaqoob et al. 1993) observations of NGC
4151 are well explained by a nonthermal model with acceler-
ation of relativistic electrons at an efficiency of less than 50%
and with the remaining power dissipated thermally in the
source. They point out that the pure thermal model gives a
worse fit to the data than their hybrid nonthermal/thermal
model.

On our part we want to emphasize that using the exact
Comptonization solution with relativistic correction (egs. [35]
and [42]) for thermal model produces extremely good fit for
the Ginga and the OSSE data.

Figure 6 shows the OSSE data and the best fit given by
equation (29) or formulae (35), (42) with a plasma temperature
of 46§ keV and Thomson optical depth of 1.1*3:2, for the
plane geometry and of 2975 for the spherical geometry (2
probability = 0.1). The best fit with kT, = 46.3 keV and
B = 0.21 gives y*> = 11.4 for 11 points and x> = 12.2 in the case
of higher temperature 55 keV and g = 0.32.

Figure 7 shows the OSSE (Maisack et al. 1993) and the
Ginga (Yaqoob et al. 1993) results and the best theoretical fit
with a plasma temperature of 4414 keV and § = 0.186%3:928.
The corresponding Thomson optical depths are 1.25 in disk
geometry and 3.2 in spherical geometry. The best fit kT, = 44.1
keV and B = 0.186 gives x> = 33.03 for twenty nine points and
%2 = 35.4 on the case of higher temperature 48.5 keV and
B = 0.214. The absorber column density was kept fixed at the
best-fit value given by Yaqoob et al. (1993), namely N, = 9.8
x 1022 cm ™2,

Assuming an X-ray luminosity equal to 103 ergs s~ ! and
using equations (55) and (56) with the best-fit Comptonization
parameters, f = 0.186 and the temperature kT, = 44.1 keV (the
relevant parameters oy, by, by, d, é are functions of § and kT,,
and are found to be 0.5, 0.14, 1.28, 1.72 respectively) we
produce the appropriate values of the photon blackbody tem-
perature and the emission surface size: kT, = 4.9 eV (hvy = 12
eV)and R = 4.8 x 10'2¢cm.

Thus we see that the thermal model provides a very good fit
to the high-energy spectrum of NGC 4151 and furthermore no
significant nonthermal emission would be irradiated. Electron
temperature of ~40-50 keV for thermal fit would be consis-

1
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F1G. 6.—(a) OSSE data of NGC 4151 (Maisack et al. 1993) and the best fit by eq. (29) or formulae (35) and (42) with a plasma temperature of46*5 keV and
Thomson optical depth of 1.173:2; for the plane geometry and of 2.9*54 for the spherical geometry (x? probability = 0.1). The best fit with kT, = 46.3 keV and
B = 0.21 gives x> = 11.4 for 11 points. (b) Same as (a) in the case of plasma temperature 55 keV and § = 0.32 giving y> = 12.2.

tent with those which are predicted two-temperature accretion
scenarios (e.g., Eilek & Kafatos 1983).

6. DISCUSSION AND CONCLUSION

The present description of high-energy spectra enables us to
discuss several issues: the technique and main idea in getting
Comptonization spectra; fits and explanation of observed
X-ray spectra by the Comptonization models; constraints for
physical parameters and geometry of compact objects; self-
consistent determination of low-frequency radiation.

We display the theoretical spectra which result from
Comptonization of low-frequency photons in plasma clouds.
The problem is generalized in the case of subrelativistic ener-
gies and temperature and it is reduced to a Fokker—Plank
technique even for very moderate plasma cloud optical depths.
The main idea in getting the spectra is to present the emergent
spectra as a convolution of the time development of the photon
energy in the course of a photon’s random walk in the plasma
cloud, with the photon distribution over scatterings. The latter
defines the probability for the photon to undergo a certain
number of scatterings in the plasma cloud. The Comptonized
X-ray spectrum is created by photons which suffer many more
scatterings in plasma cloud than the average number (ST80;
ST85). However, these photons produce the specific radiation
field, with the specific angular and space distributions which
are only determined by the plasma cloud optical depth and are
independent of energy (ST85), ie., photon random walk
around plasma cloud occur independently on photon energy
change (gain). Thus the upscattering spectral formation even in
the case of small optical depths can be considered in terms of
the Fokker—Plank approach when the photon energy change is
weighted by the Compton scattering kernel (CSK) over photon
directions and the photon scattering distribution. It turns out
that, for high energies (much more than the average energy of
the primary low-frequency photons), the main contribution to
the above convolution integral comes from the exponential tail
of the scattering distribution equation (17), which is the asymp-
totic form of any scattering distribution in a finite medium.
Therefore, it is possible to derive a simple equation for the
convolution determination, equation (15), the Comptonization

stationary equation (CSE). The shape of the emergent spec-
trum is obtained as a solution of that equation. As a matter of
fact, CSE contains only two parameters, the plasma tem-
perature, kT,, and the dimensionless escape rate, §, which
control the spectral shape. The temperature or average energy
of low-frequency photons determines simply the normalization
of the spectrum. The solution of equation (15) (or eq. [29]) is
presented in analytical form, equations (35)—(37) and (42) (egs.
[35] and [44] in the optical thin case, 7, < 2). Numerical solu-
tions are discussed as well (the Run method. Both of them are
very convenient for spectral data analysis.

The shape of a number of X-ray spectra are fitted by the
Comptonization model. We illustrate this in § 5. The spectral
power-law slope along with the exponential cutoff contain
information about the plasma optical depth and plasma tem-
perature. The normalization of spectrum helps to determine
the emission region surface area. This enables us to evaluate
the energy flux per unit area, as long as the observed spectrum
is fitted quite well by a Comptonized low-frequency blackbody
spectrum (we obtain the parameters, optical depth and tem-
perature, which give the Comptonization enhancement factor;
see eqs. [47] and [53]). Furthermore, the assumption of a
certain distance to the X-ray source, along with the count flux
on Earth, give the emission region surface area.

The next question is how to distinguish between the two
geometries (plane and spherical) by analyzing X-ray spectra.
The optical depth values are obtained in a straight-forward
calculation in the framework of a certain geometrical model
(disk or sphere). However, a source characterized by very hard
unsaturated Comptonization spectra, implies very high plasma
temperatures and very small optical depths in the assumption
of disk geometry. In this case, hard photons are mostly concen-
trated along the disk, forming a specific knife beam. Because of
this, the possibility of observation of such hard photons from
the disk drops when increasing the spectral hardness. There-
fore, it is natural to suppose that hard photons come from
quasi-spherical plasma clouds, rather than from the disk.
Another possibility for determining the emission region
geometry is through polarization measurements. For disk
geometry, we would expect significant polarization with mag-
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Fi1G. 7—a) OSSE (Maisack et al. 1993) and Ginga (Yaqoob et al. 1993)
results for NGC 4151 and the best theoretical fit with a plasma temperature of
44*%keV and B = 0.18673:328 and the appropriate Thomson optical depth are
1.25 in disk geometry and 3.2 in spherical geometry. The best fit with kT, =
44.1 keV and B = 0.186 gives x> = 33.03 for 29 points. The absorber column
density was kept fixed at the best-fit value given by Yaqoob et al. (1993),
namely N, = 9.8 x 1022 cm™~2 (b) Same as (a) for the case of plasma tem-
perature of 48.5 keV and B = 0.214 giving x> = 35.4. (c) Dependence of EF, for
the parameters kT, and f the same as in Fig. 7b.
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nitudes exceeding 40% in the case of optical depths less than
0.4 (ST85).

In § 4, we demonstrate that the self-consistent determination
of the energy of low-frequency sources, which results from
energy exchange between hot and cold material of an accretion
disk, is possible only in the limited range of Comptonization
parameters. If the Comptonization parameter is too big, y > 6
(or spectral indices o < 0.5), a lot of energy is deposited due to
the recoil effect in the cold layer, and the average energy of the
photons escaping from the cold layer is comparable with the
plasma temperature. In the opposite case of small Com-
ptonization parameter values, y < 3 (or spectral indices a > 1),
the Comptonization spectrum suffers a shortage of hard
photons. In that case, the deposition of energy due to the recoil
effect in a cold layer is so small that the produced soft radiation
cannot be upscattered to the output radiation.
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APPENDIX A

COMPTON RADIATIVE TRANSFER AND FOKKER-PLANK APPROXIMATION

At first we consider the case of plane geometry. However, in what follows there is no big difference between spherical and plane
geometries. Therefore, a reader can repeat all the details for spherical geometry too.

Let us assume that we have a disk with Thomson optical half-thickness z,, filled by free electrons. The equation for the specific

intensity, I of a radiation field is expressed through

éal—(‘;)’—1:’—é)=80(v,t)+ L
T

j dv’f dﬂ’[l, o(V o, Q  Q T)V,1,&) — av>v,Q - Q, T)I(v, 1, f)] , (A1)
n.or Jo an v

where v, v' are the photon frequencies, 7 is the Thomson optical coordinate with respect to the middle disk plane, Q (incoming) and
L' (outgoing) are photon directions, ¢ (incoming) and & (outgoing) are cosines of angles with respect to the disk normal. The
intensity of radiation depends on the frequency, v, the Thomson optical coordinate, 7, and the photon direction cosine, & The
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scattering kernel, o, (e.g., Pomraning 1973) depends on the plasma temperature T,, the incoming (v) and outcoming (v') frequencies,
and on the cosine of the angle between the two photon directions ({ = Q' - Q). In order to reduce this equation to the equation for
the zero moment of intensity, J(v, ) = (1/4n) [,,dQI over all solid angles, we multiply equation (A1) by 1/4x and then integrate
over all solid angles Q, keeping only zero moment of the intensity in the right-hand side:

0H(v, 1) 1

= B s
ot ol ) + n,or

f v j dn'B SO = v, T, 1) — SO = v, T)J(, r)] (A2)
0 4rn

Here

1
SV, T)= i j dQo(vo>v,Q - Q T)
4n

and 4nH(v, 7) = [,,dQEI(v, 1, &) is the specific flux of radiation at the frequency v and at the optical coordinate 7.

The second equation which contains the first moment of intensity H(v, 7) is obtained by multiplying the original equation (A1) by
¢/4n and then integrating. We keep two terms in the expansion of the intensity over &, [I(v, 1, &) = J(v, 1) + 3H(v, 1)¢] in the first
integral on the right-hand side of equation (A1). Introducing the second moment of intensity

K(V, T) = i j ngll(vy T, é) s
4n

and the transport function (see eq. [1]) we find

H(v, 1)
Alv, ©)

Excluding the first moment of intensity, H in equations (A2) and (A3) and introducing the ratio of the second moment to the zero
moment, v = K/J, the radiative transfer equation is expressed through

Kv,1)= — (A3)

1 0
— (v, ©) 9 I 9] _ By(v, 1) + j dv f dn'[l, S = v, TY(, 1) — S(v = V', T,)J(v, r)] ) (A9)
ot ot n.o1 Jo o v
Here the differential operator
0 [0
Lt = E (517. v> (AS)

on the left-hand side, and the appropriate energy integral operator L, on the right-hand side, act on the average intensity J(v, 7).
Thus we can rewrite equation (A4) in the operator form

L,JW,7)+ L J(v, 1) = —A; (v, ®)By(v, 1) . (A6)

We have to add to equation (A6) the boundary condition which implies that photon scattering takes place only in the disk (the
scattered photon flux from outside is zero); hence

4nH(v, 1) = J:” do J: El(v, T4, E)AE . (A7)

Expressing H through K (eq. [A3]) and finally through J by means of the ratio v, we obtain the boundary condition at the edge of
the disk, t = 7:

I[vJ(v, t4)]

A
tr ar

+ v9J(v, 79) =0 . (A8)

Here

Vo = ,“(!) éI(V, To> é)dé
O [, 10, O)AE

We need to note that ratios v and v, in general, depend on the frequency v and the Thomson optical coordinate . However, in
the cases of interest for Compton upscattering, the angular distribution of radiation field is determined by the plasma cloud optical
depth 74, and is independent of the photon energy (ST85), hv and hence, these ratios are functions of the optical coordinate 7 only.
For an isotropic (t, > 1) and almost collimated (7, < 2) radiation fields, these ratios are nearly constant. For an isotropic field,
v =%and v, = . For the beam collimated near the direction for which cosine & = ¢y v =¢Z and vy = £,. We should remind that,
the beam cosine £, depends on 7, only, and is independent of the energy, hv (ST85). Thus for the isotropic case, (1, > 1), the space
operator L_is reduced to the operator

@ _ - 2 Al
L 3 dt? (A9)
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with the boundary operator, I,
o 3
I,=4, PR + 5 (A10)

In the case of the beam field (7, < 1), because the form of L, (eq. [A5]) is very sensitive to the exact determination of the cosine ¢
the space operator L, with the appropriate boundary condition can be represented in a more elegant way by the single integral
operator, equation (23). Also, the diffusion operator L? is derived from the integral space equation (25) for the case 7o > 1. In order
to do this we expand the functon B(z) of equation (25) in a Tayler series over x = t’ — 1, keeping only the three terms

B() = B(x) + B@)x + 20

x2. (A11)

The zero, first and second momenta of the exponential integral E, (|t — t’|) over the range of 7, from —1, to 7, equal to 2, 0, 4/3,
respectively. Using these values we find

3B"(1) = —By() . (A12)

It is worthwhile noting that the accuracy of the representation of momenta for E, is of order of t2e~*forall t < 7, — 1.
In § 2.1 we formulate the statement that the solution of equation (6) can be represented by the convolution from (8), if the
right-hand side of equation (6) can be factorized in the form:

Dz, v) = r(DY(v) . (A13)

This statement is general and is valid for any boundary problem of the equation (A6), i.e., if the left-hand side of arbitrary equation is
a result of the action of the sum of two operators, L, and L, and the right-hand side is factorized, as in equation (A13). The validity of
the convolution form, Eq. (8) as the solution of equation (A6) (or eq. [6]) is checked by the following substitution:

Jw R(t, wL, N(v, wydu + Jw L. R(t, u)N(v, wydu = —y(v)r(z) . (A14)
0 0
Using equations (9)—(12) we find

® ON(v, u) ® 0R(z, u) _ | ? ONG, WR(x,w) , B

J; R(z, u) % du + L “ou N, wdu = J; o du = —y(v)r(z) . (A15)

The integral energy operator, L, of equation (A6) was first reduced to the Fokker-Plank form by Kompaneets (1956) for the case
of nonrelativistic photon energies and plasma temperatures. Subsequently, various authors have generalized Kompaneets’ work up
to the subrelativistic energies and temperatures (e.g., Cooper 1971; Prasad et al. 1988). In § 2.1 we present L, in the Cooper—Prasad’s
form.

In order to develop the same approach for spherical geometry we need only to replace the plane space gradient of equation (A1)
by the spherical space gradient:

oI 1 —¢%01
— + —_—
ot T 0&

and to repeat the integration over all solid angles. Here ¢ refers to the cosine of the angle between the photon direction and the
radial direction.

VI=¢

APPENDIX B

DIFFUSION COEFFICIENT FOR THE COMPTON FOKKER-PLANK EQUATION IN THE COLLIMATED
RADIATION FIELD

Prasad et al. (1988) have derived equation (3) for the energy diffusion coefficient 5, of the Fokker—Plank equation (6) (or eq. [A6]).
The solution of equation (3) reads

(z—72)

1 o0
" ©) =5 f dz’ exp I:—@—:IC(Z’, 0). (B1)

z

Here,

0, ©) =z — 2)> = L ‘¢~ 2dS(z>7, ©). (B2)
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The weighted energy change §(z', ®) is presented by the integral (compare with Prasad et al. 1988)
¢, ®) = ‘[dvf G, (B3)
_ -3/—)' 2n 1 , 1= é 2 (1 _ 6)2221 D D'
—16nL dwj_l[é(l//—l//+)+5(l//—~//-)]d!// -+ 1—mpm | + =y (N e—1+A -2 (BY)

In the case of a collimated radiation field by using Dirac delta function the integral over photon direction Q' is reduced to the sum of
two terms which correspond to the fixed photon direction §, = arccos ¥, ~ 0 and 3_ = arccos ¥ _ ~ n. The integral over z’ is
obtained by using the Dirac delta function which uniquely fixes the dimensionless photon energy z’ in terms of z, the photon
directions 9, 3_, and the electron velocity ». In equations (B3) and (B4)

_ 2% exp (—1/0©)

IO = eck,1/0)

(BS)

the relativistic Maxwellian distribution at electron temperature ©, K , is the modified Bessel function of the second order, and

D=1—pw/c, D=1-—yvjfc, i=1/./1—-0vc?. (B6)

Here, u and y' are the cosines of incoming (outgoing) photon directions and electron velocity direction respectively, £ is the cosine of
the angle between photon incoming and outgoing directions. In our case of a collimated radiation field we assume that £ ~ 1 or
¢ ~ —1. The Dirac delta function is used to fix 2/,

. zD B7
TR - 0 o

The term of equation (B4) which corresponds to the scatterings in the forward direction (¢ = 0) is eliminated, because z — z’ = 0.
Thus, integrating equation (B4) and taking into account equations (B5)—(B7) we obtain

, 3 _1— 0 ) 3 i X+
C(Z’Q)_2®K2(l/®)£ A exp( ®)dAJ;_ Gdx , (B8)
Here
3 72(1-x z 1 2 1
a2 =5 5 (M - s ®)
and

A2 -1

7 (B10)

v
X=u-, X4y = +(-)

c
Since we are interested in getting the power-law part of the spectrum, we take into account only the Doppler effect and we neglect

the term 2z/4 of the function G which is responsible for the recoil effect. In order to get 7(z, ®) we integrate equation (B1), using
equations (B8) and (B9)

1z, ©) = 3{[z* + 4OP;(z, ®)]1,(©) — 4P5(z, O)[,(B)} . (B11)
Here
Psy(z, ®) = 23 + 3022 + 602z + 60@* , (B12)
_ 1 ® -4
I, = ®K2(1/®)J; e M8F,(A)dA (B13)
and
__ L T e
12_®K2(1/®)£ e MOF,(A)dA . (B14)

The functions F(4) and F,(4) are expressed through elementary functions:

A*—1nt2 28 32 -1 1 4 A— (@42 —1nt?
Fl(l)=)~—2 1+F +T+? 10+F lnm, (B15)
1(A2-1)% 32— 1 1 A— (A2 =1t
Fz(l)=§ B + FE +‘j"5 1 +ﬁ nml/—z. (B16)
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Integration by part gives us

@fw e M8 @ - di = QJOO e M8 @ - : Jwe‘l/e (@ =12
A2 3
1 1

1

o di+ 3 A, (B17)

and thus, the energy diffusion coefficient #(z, ®) is represented as follows

n(z, ®) = 3{z*1,(®) —~ 4P(z, O)R(O)} .

(B18)

It is easy to show by expanding F,(4) and F,(4) over x ., (eqs. [B10], [B15], and [B16]) that

1,(8) =

1+(19/8)0 ...
1+ (1580 ...°

(B19)

and that R(®) is of order ®* [R(®) = O(@?)]. It is worthwhile noting that the radiation field in a plasma cloud of small optical
depth is never strongly collimated and the half-width of the beam is of order (15°-20°). Therefore, in order to apply equation (B18) in
the realistic situation, we have to take into account the deviation of the cosine of scattering angle from —1 (in the preceding
consideration we take into account only the scattering angle equals to =, because the zero angle gives rise to zero energy change).
Using equation (B3), (B4) and (B7), we can show that the factor ¢ = 3/2 in equation (B18) should be replaced by the correct factor

31-91+8)
c=————8————

For a typical scattering angle cosine is ~ —0.8, this gives ¢ ~ 1.

(B20)
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