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ABSTRACT
A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the

Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma
containing high-energy photons. These are coupled nonlinear integro-di†erential equations. The collision
kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and
creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which
are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equi-
librium solution is expressed analytically in terms of the initial conditions. For two speciÐc cases, for
which the photon and the pair spectra are initially constant or have a power-law distribution within the
given limits, the time evolution of the plasma is analyzed using the new method. The Ðnal spectra are
found to be in a good agreement with the analytical solutions. The new algorithm is faster than the
Monte Carlo scheme based on uniform sampling and more Ñexible than the numerical methods used in
the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astro-
physical applications of this technique are discussed.
Subject headings : elementary particles È plasmas È radiation mechanisms : nonthermal È relativity

1. INTRODUCTION

Nonthermal emission of high-energy radiation from a
variety of compact astrophysical objects, e.g., c-rayÈburst
sources & Rees pulsars &(Me� sza� ros 1993a, 1993b), (Chen
Ruderman active galactic nuclei (AGN; &1993), Lightman
Zdziarski and and1987 ; Svensson 1994 ; Padovani 1996),
jets in the AGN seem to indicate the presence(Sikora 1994)
of a relativistic electron-positron pair plasma in the dense
radiation Ðelds of those sources. Such plasmas may exist
also in the accretion disk coronas of the Galactic X-ray
binaries et al. the ergospheres of Kerr black(Sunyaev 1992),
holes & Shaham and the black hole accretion(Piran 1977),
disks & Kusunose & Svensson(Tanaka 1985 ; Bjo� rnsson

It is conceivable that the pair plasma in some of these1992).
sources is in thermodynamic equilibrium with itself and
probably in equilibrium with the radiation. However, it is
more plausible that many of them may consist of nonequi-
librium pair plasmas & Blandford hereafter(Coppi 1990,

Many of the previous papersCB90; Zdziarski 1988, 1989).
on this topic have concentrated on the properties of a rela-
tivistic pair plasma in thermal equilibrium (e.g., Bisnovatyi-

Zeldovich, & Sunyaev & BandKogan, 1971 ; Lightman
hereafter1981 ; Lightman 1981, 1982 : Svensson 1982b,

Examples of the time evolution of aS82b; Zdziarski 1985).
thermal pair plasma, taking into account the Ðnite-medium
radiative transfer e†ects can be found in & StepneyGuilbert

and & Katz There(1985), Kusunose (1987), Carrigan (1992).
are not many papers that deal with the evolution of a non-
equilibrium pair plasma in detail ; some examples can be
found in & ZdziarskiLightman (1987), Svensson (1987),

Coppi, & Lamb and here-Zdziarski, (1990), Coppi (1992,
after C92).

1 Dr Shaham passed away during the course of this work.

These investigations are generally based on the Monte
Carlo (MC) methods or on solving the Boltzmann equa-
tions (kinetic theory approach). In a simple MC method
based on uniform sampling Sobol, &(Pozdnyakov,
Sunyaev individual particles are followed as they1977),
undergo interactions in the source. In this method, it is
usually easy to take into account the spatial inhomoge-
neities and radiative transfer e†ects well. But it typically
su†ers from relatively poor photon statistics at higher ener-
gies and does not lend itself to time evolution calculations
involving broadband spectra. For examples, of such MC
simulations, see & Stern In the kineticNovikov (1986).
theory approach, the system is represented by the photon
and particle distribution functions which are discretized in
energy as well as the spatial coordinates, and the time evol-
ution is determined by solving the Boltzmann equations
numerically. In general, it is very difficult to solve the
resulting integro-di†erential equations. Moreover, they are
usually ““ sti† ÏÏ (i.e., there are very di†erent timescales in the
problem). The principal advantage of this approach is that
it gives good photon statistics at higher energies. Some
examples of the kinetic theory approach can be found in

and et al.C92, Ghisellini (1987), Svensson (1987), Fabian
(1986).

There have been some attempts to improve the photon
statistics in the conventional MC schemes which go by the
name phase-space density (PSD) array representation. In
this approach, the system is represented by the discretized
distribution functions (as in the kinetic theory approach),
but the particle or photon transitions between the energy
bins is simulated using the MC method and the interaction
between the spatial cells is modeled with the aid of the
escape probabilities. So far this approach has been used to
model only homogeneous and spherically symmetric
systems (e.g., Another recent variant of the MCStern 1985).
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method is based on the large-particle (LP) representation,
which is decribed in detail by et al. In thisStern (1995).
scheme, the system is represented by an array of ““ large
particles,ÏÏ each of which corresponds to a group of real
particles sharing the same physical parameters (i.e., particle
type, position, momentum, and energy). It is more Ñexible
than the PSD approach in the sense that each LP is tagged
with a statistical weight, which is proportional to the
number of real particles represented by that LP. For
example, this weight can be assigned based on the total
energy carried by each LP. In many nonequilibrium
systems of interest in astrophysics, the number of particles
in the low-energy range is typically several orders of magni-
tude larger than that of the particles in the high-energy
range. Therefore, the efficiency of the method may be
improved by assigning lower statistical weight to the low-
energy LPs. Intuitively this approach makes sense, but
there is no general proof for its validity or e†ectiveness
(except for the numerical experiments presented by etStern
al. Besides, the statistical weights are rather ad hoc.1995).

From the preceding discussion, it is clear that the main
problem in the analysis of nonequilibrium pair plasmas is
the computational difficulty. The principal aim of this paper
is to present a new method for solving the kinetic equations
based on an adaptive MC sampling scheme. It is faster than
the conventional MC method (based on uniform sampling)
and is more Ñexible (and in some cases, faster) than the
numerical methods previously used. Our method resembles
the LP method described above, in the usage of the sta-
tistical weights, but it is much more rigorous. Moreover, it
can accommodate anisotropic distributions with greater
ease.

In a relativistic plasma containing arbitrary densities of
pairs and the high-energy photons, the collision cross sec-
tions for various microscopic processes depend on the
energy. One cannot use, for example, the simple Thomson
cross section as one can do in the nonrelativistic case. In
addition, there is a creation and annihilation of the pairs
and photons that alter the densities. Therefore we have to
follow the time evolution of the number density as well as
the spectrum of each species. Besides, the problem is inher-
ently nonlinear due to the form of the collision kernels in
the Boltzmann equations. It is possible to write all the colli-
sion kernels as multidimensional integrals. This reduces the
problem of solving the coupled Boltzmann equations for
the photons and the pairs into a purely computational task
of evaluating many of these integrals, after each time step,
quickly and efficiently. This way of formulating the problem
of kinetic theory is more Ñexible in accommodating any
kind of distribution functions. We have developed a new
algorithm, based on Monte Carlo sampling, for computing
such integrals. The functional form of the integrands is not
assumed a priori. Also, no constraint is placed on the shape
of the integration region. Usually such integrals are evalu-
ated either numerically (by using an equally spaced discrete
grid) or through a Monte Carlo sampling technique. In
order to make the former method more efficient, we have to
choose the shape of the discrete mesh depending on the
form of the integrand. This takes away the Ñexibility from
the method (i.e., the algorithm will depend on the form of
the integrand). The latter method, based on uniform sam-
pling throughout the integration region, is widely used in
astrophysics. It is possible to speed up the computation in
this method by sampling selectively, i.e., sampling more fre-

quently in those domains where the integrand is larger. This
scheme is known as the importance sampling method or the
adaptive Monte Carlo method. There is an algorithm, orig-
inally due to which implements this.Lepage (1978),
However, it is not well suited for the type of integrals that
arise in the present context. We have developed a new algo-
rithm to implement the adaptive Monte Carlo method
which is very efficient (see below).

In the next section we deÐne various quantities, explain
the basic pair plasma model we use, and write down the
general kinetic equations. In and we give the integral°° 3 4
expressions for various collision kernels, which are valid for
all energies. These collision integrals are cast in a form that
is well suited for the Monte Carlo integration. In we° 5
describe how we integrate the Boltzmann equations
numerically. There we explain the adaptive Monte Carlo
algorithm we use. In we express the Ðnal equilibrium° 6
state of an homogeneous and isotropic plasma (with no
escape of particles or photons) analytically in terms of the
initial conditions. Then we apply our time evolution code to
two speciÐc examples of nonequilibrium conÐgurations and
compare the Ðnal results with the corresponding analytical
solutions. These examples serve as a test for the overall
formalism presented in this paper. Finally, in we sum-° 7,
marize this work and discuss some astrophysical applica-
tions.

2. MODEL, DEFINITIONS, AND THE NOTATION

We consider a neutral, stationary, and unmagnetized pair
plasma which is nonthermal (i.e., not in equilibrium). We
assume that the plasma is homogeneous and isotropic. If
the plasma is in a moving source we must interpret all the
physical quantities given below as the comoving-frame
quantities. The number densities (i.e., the number of par-
ticles per unit volume) of the electrons, positrons, photons,
and protons are given by and respectivelyn~, n

`
, nc, n

p
,

Throughout this paper we express the(n~ \ n
`

] n
p
).

momentum and energy in units of mc and mc2, respectively.
Here m is the electron rest mass and c is the speed of light in
free space. Therefore the momenta and the energies of the
particles, as well as the photons, are represented by dimen-
sionless numbers everywhere. For the models we consider
here the protons can be assumed to be at rest. We assume
that the state of the plasma is completely described by the
Lorentz invariant distribution functions p) and p),f

B
(x, fc(x,

for positrons, electrons, and photons, respectively. Here x, p
represent the position and the momentum four-vectors,
respectively, and x, p represent the corresponding three-
vectors. Our choice of the metric is such that p2\ 1 for
electrons. In the case of photons we have p \ v(1, k), where v
is the photon energy and k is a unit vector in the direction
of its three-momentum. Similarly, p \ c(1, b) for the pairs.
Here c is the Lorentz factor and b is the velocity in units of
c. We denote the magnitude of b by b. The number density
of the particles of type i with a momentum p is given by

We deÐne the total densities of various species to bef
i
d3p.

where the integration extends over all valuesn
i
\ / f

i
(p)d3p,

of the momenta. Because of the isotropy, we have
d3p \ 4nv2 dv in the case of photons and d3p \ 4nbc2 dc for
the pairs.

Since we assume that the plasma is homogeneous and
istropic, various distribution functions depend only on time
and the energy (or the magnitude of the momentum). We
deÐne the spectral functions for photons, positrons, and
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electrons to be

Fc(v) \
4nv2
nc

fc(v) and F
B

(c) \ 4nbc2
n
B

f
B
(c) , (2.1)

respectively. The time dependence of these functions is not
shown explicitly. The spectral functions are normalized so
that

P
0

=
dvFc(v)\ 1 and

P
1

=
dcF

B
(c) \ 1 . (2.2)

We see that the number of photons of energy v per unit
volume and unit energy is given by We will assumencFc(v).that the electrons and the positrons have the same spectral
functions, i.e., for all values of c, which weF~(c) \ F

`
(c)

denote by F
e
(c).

The equilibrium spectral functions, which are indepen-
dent of time, are given by

Fc(v) \
1

2f(3)#3
v2

exp (v/#) [ 1
, (2.3)

F
e
(c) \ 1

#K2(1/#)
bc2 exp ([c/#) . (2.4)

comes from the Planck function for theEquation (2.3)
photons, where f is the Riemann zeta function and
f(3)+ 1.202. In that equation we have used the equilibrium
density of photons

nc \ 16nf(3)
Amc

h
#
B3

, (2.5)

where h is the PlanckÏs constant. is the rela-Equation (2.4)
tivistic Maxwell-Boltzmann distribution for electrons and

is the second-order modiÐed Bessel function of theK2second kind. In all these equations is the# \ kB T /mc2
dimensionless temperature of the plasma, where T is
the temperature and is the Boltzmann constant.kBTo study the time evolution of this system we should
proceed from the relativistic Boltzmann equations for the
pairs and photons. In the latter case it is the same as the
radiative transfer equation. The Boltzmann equation (see
e.g., Groot, van Leeuwen, & van Weert for thede 1980)
particles of type i, described by which takes into accountf

i
,

the collisions with the particles of type j, described by isf
j
,

given by

pkLk f
i
(x, p)

\;
j

P d3q
q0 d)@[ f

i
(x, p@) f

j
(x, q@) [ f

i
(x, p) f

j
(x, q)]Fp

ij
.

(2.6)

Here is the partial derivative with respect to xk and theLksummation over k is implied. The summation for j extends
over all relevant processes. Here q0 is the energy component
of the four-vector q. Using the initial and the Ðnal momenta
to designate the particles, the collision processes can be
represented as p ] q % p@] q@. The solid angle around one
of the outgoing particles is d)@. Finally, is the crossp

ijsection for the process and F is the invariant Ñux factor. It is
necessary to remark that in the present form, the above
equation cannot account for the quantum mechanical Bose
enhancement and Fermi blocking e†ects, respectively, for
the photons and pairs. In order to do so, we need to take
into account the particle occupation numbers in the phase

space. For photons, this is given by

gc(v) \
1
2
A h
mc
B3

fc(v) \
A h
mc
B3 nc Fc(v)

8nv2 , (2.7)

which in the equilibrium case reduces to 1/[exp (v/#) [ 1],
as expected. If we are considering a process in which two
particles of momenta p and q produce a photon of momen-
tum p@, then we should make the replacement

in the Boltzmann equation.f
i
(p) f

j
(q) ] f

i
(p) f

j
(q)[1 ] gc(p@)]

These e†ects play a signiÐcant role only when orgc^ 1
For the densities and thenc v~2Fc(v) ^ 1.76 ] 1030 cm~3.

energies of interest here, these quantum mechanical e†ects
can be neglected. An analogous remark applies to the case
of the pairs. Such induced e†ects in a relativistic thermal
plasma at high temperatures and densities have been con-
sidered by many authors in the past (e.g., McKin-Ramaty,
ley, & Jones 1982).

The Boltzmann equations reduce to simple rate equa-
tions in the comoving frame as a result of the homogeneity
and isotropy of the plasma. We denote the comoving time
coordinate by t. The rate equations are given by

L
Lt

f
i
\;

q
[g

i
[ f

i
s
i
]
q
, (2.8)

where i stands for either photons or electrons and q labels
the binary collision process (Compton scattering, pair pro-
cesses, bremsstrahlung, or Coulomb collisions). The sum-
mation runs over all those processes that involve a particle
of type i among the products of the collision. Here is theg

iemission coefficient for the production of a particle of type i
with momentum p (or scattering of such a particle into that
Ðnal momentum state) and is the corresponding absorp-s

ition coefficient. Notice that and depend only on thef
i
, g

i
, s

ienergy of the particles and time. In order to obtain the
collision kernels, and we require the binary reactiong

i
s
i
,

rates in a relativistic plasma (e.g., Groot et al.de 1980 ;
Using the appropriate reaction rates we canBaring 1987a).

write

g
i
(p) \ ;

l,m

c
1 ] d

lm

P
U
dF

lm
F

lm
dp

lm
dP

, (2.9)

where for identical colliding particles (i.e., l \ m)d
lm

\ 1
and is zero otherwise. The summation in this equation is
over those incident states (labeled by l and m) which result
in a Ðnal state labeled by i. Furthermore, is thedp

lm
/dP

di†erential cross section for the process, whereas dP is a
shorthand for d3p which is deÐned above. The four-
momenta of the colliding particles are given by p

k
\ (p

k
0, p

k
)

(for k \ l, m) and the four-momentum of one of the out-
going particles is p. The product of the phase-space densities
of the colliding particles is given bydF

lm
dF

lm
\ <

j/l,m
f
j
(p

j
)d3p

j
. (2.10)

We have for the photons andd3p
l
\ v

l
2 dv

l
d)

l
d3p

l
\

for the pairs. The kinematic factor forb
l
c
l
2 d)

l
dc

l
F

lmbinary collisions (see, e.g., & Lifshitz is givenLandau 1975)
by

F
lm

\ (u
l
u
m
)brel(pl

, p
m
) , (2.11)

where and is the relative velocity of the collid-u
l
\ p

l
/p

l
0 breling particles in units of c. If at least one of the colliding
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particles is a photon we will have Otherwisebrel \ 1.

brel(pl
, p

m
) \ [(b

l
[ b

m
)2[ (b

l
Â b

m
)2]1@2

1 [ b
l
Æ b

m
. (2.12)

The integration in is over a region U of theequation (2.9)
phase space of the colliding particles, which is speciÐed by
the energy-momentum conservation. It depends on the
energy p0 of the Ðnal state. Now we specialize to the case of
a process for which the reacting particles are labeled by
l\ 1 and m\ 2. By using we can expressequation (2.1)

in terms of the spectral functions and the densities.dF12This gives the following Ðnal expression for the emission
coefficient (i.e., the production rate) for electrons or
photons :

g(v) \ cn1n2
16n2(1] d12)

P
U

<
j/1

2
[F

j
(v

j
)dv

j
d)

j
]F12

dp
dP

.

(2.13)

Now we deÐne the total reaction rate between two par-
ticles of energies and to bev1 v2

R(v1, v2)\
cn1n2

2(1 ] d12)
P
~1

1
dk F12 ptotal , (2.14)

where k is the cosine of the angle between the momenta of
the colliding particles and is the total cross section forptotalthe process considered (integrated over the entire phase
space of the emitted particle). Clearly as wellF12 ptotaldepend only on and k. Now it is possible to expressv1, v2,the emission coefficient in terms of the total reaction rate as

g(v) \
P

<
j/1

2
[dv

j
F
j
(v

j
)]R(v1, v2)P(v1, v2 ; v) , (2.15)

where the integration is over all values of and withoutv1 v2any restriction (in contrast to In the above equa-eq. [2.13]).
tion, P is the probability, integrated over all incident and
emergent angles of the particles, for emitting a particle of
energy v, from a collision between the particles of energies

and It is normalized so that v) \ 1, wherev1 v2. / dvP(v1, v2 ;
the integration is over all values of v. hasEquation (2.15)
been used by several previous authors (e.g., CB90).

We can obtain the absorption coefficient from equation
with only minor changes. For the absorption of the(2.9)

particles of type i with a momentum we Ðnd thatp
i

f
i
(p

i
)s

i
(p

i
)\;

j

c
1 ] d

ij

P
U

dF
ij

dP
i
F

ij
ptotal . (2.16)

Here is the total scattering cross section for theptotalprocess. The summation extends over all relevant processes.
For a binary process, involving the particles of type i and
type j, the absorption coefficient can be written in terms of
the spectral functions as follows :

s
i
(v

i
) \ cn

j
4n(1 ] d

ij
)
P
U
dv

j
d)

j
F

j
(v

j
)F

ij
ptotal , (2.17)

where the integration region U is determined by the energy-
momentum conservation. This way of writing the emission
and absorption coefficients is very convenient for Monte
Carlo evaluation we describe below.

We remark that in equations we have used v(2.13)È(2.17)
in a generic way and it has to be replaced by c whenever it
refers to the pairs. Physically, 4nv2g(v) is the rate at which

photons of energy v are emitted per unit volume and unit
energy due to the process under consideration ; similarly,
4nbc2g(c) gives the corresponding electrion emission rate
(recall that we express energy in units of mc2). Electron and
photon absorption rates are obtained in a similar way. If
the size of the system is l, the optical depth q and the absorp-
tion coefficient are related by q\ ls/c. Equations and(2.13)

constitute the point of departure for the following two(2.17)
sections where we obtain the emission and the absorption
coefficients for the photon and the pair kinetic equations.
We remark here that in the case of Compton scattering of
the photons as well as the pairs, the collision integrals only
give the rate at which the spectrum changes at a given
energy and do not imply any change in the total numbers of
the particles.

3. COLLISION INTEGRALS FOR PHOTONS

The preceding discussion has been very general. We now
obtain the integral expressions for the photon emission
coefficients due to Compton scattering, two-photon pair
annihilation, and bremsstrahlung and the absorption coeffi-
cients due to Compton scattering and the pair creation. In
this paper we do not consider the double-Compton emis-
sion or the three-photon emission through pair annihi-
lation. Also we do not consider the e†ect of photon
absorption through the inverse-bremsstrahlung (free-free
absorption).

3.1. Compton Scattering of Photons
The problem of Comptonization in astrophysics has been

analyzed extensively by many previous authors (e.g.,
& Gould & Lightman andBlumenthal 1970 ; Rybicki 1979 ;

more recently by Here we obtain an integral expres-CB90).
sion which is valid at all energies of the incident electrons
and photons. Throughout this paper we call the comoving
frame of the plasma the C frame. Let p and be thep1momenta of the incident electron and photon, respectively,
in the C frame. Let q and be the corresponding momentaq1after the scattering. Recall that p2\ 1 and Wep12\ 0.
require the Ðnal photon energy to be v. Hence we set q1\
v(1, k), where k is the directional unit vector. We write
p \ c(1, b) and Here c is the Lorentz factor ofp1 \ v1(1, k1).the incident electron, b is its three-velocity in units of c, isv1the energy of the incident photon, and is its directionalk1unit vector. Using the fact that we(p] p1[ q1)2\ q2\ 1
obtain the well-known relation between the initial and the
Ðnal photon energies, viz., or wherev\ v8 (v1) v1\ v8 1(v),

v8 \ a1cv1
ac] bv1

and v8 1\ acv
a1c[ bv

. (3.1)

Here a \ 1 [ b Æ k, and b \ 1 [ cos h,a1\ 1 [ b Æ k1,
while gives the cosine of the photon scat-cos h \ k Æ k1tering angle in the C frame. Let k \ cos h and the cosine of
the angle between b and k is deÐned to be k@. The angle
between the planes formed by the pairs of vectors (k, andk1)(k, b) is deÐned to be /. It is easy to show (see the Appendix
for further details) using that the Comptonequation (2.13)
emissivity for photons is given by

g(v)\ cnc(n~ ] n
`

)r
e
2

8nv2
P
U
(dc dk dk@ d/)F

e
(c)Fc(v8 1)

A *
2c2af

B
,

(3.2)
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where *\ m2[ m sin2 h@] 1 and whilem \ a1c/(a1c[ bv),
h@ is the photon scattering angle in the rest frame of the
incident electron and is the classical radius of an electron.r

eThe region of integration U is deÐned by c& ¹ c¹ c',
[1 ¹ k, k@¹ 1, and 0 ¹ /¹ 2n subject to the condition
that Here and are the limitingv1&¹ v8 1¹ v1'. c& c'electron or positron energies in the plasma. Similarly v1&and are the limiting photon energies.v1'Now we obtain the corresponding ““ absorption ÏÏ coeffi-
cient (as stated before, this is not a real absorption ; the
photons are scattered into a di†erent energy bin). Let
p \ v(1, k) and q \ c(1, b) be the initial momenta of the
photon and the electron, respectively. Various symbols have
the same meaning as above. The photon energy in the rest
frame of the incident electron is given by
x \ pq \ cv(1 [ bk), where k is the cosine of the angle
between the vectors b and k. Now n

j
\ n

`
] n~, d

ij
\ 0,

and Sub-F
j
\F

e
, d)

j
\ 2n dk, F

ij
\ (1[bk), v

i
\ v, v

j
\ c.

stituting these expressions into we obtainequation (2.17),

s(v) \ c(n~] n
`
)

2
P
U

dk dcF
e
(c)(1[bk)ptotal(x) , (3.3)

where

ptotal(x) \ 2nr
e
2
G1 ] x

x3
C2x(1 ] x)

1 ] 2x
[ ln (1] 2x)

D

] ln (1] 2x)
2x

[ 1 ] 3x
(1 ] 2x)2

H
(3.4)

is the total cross section for Compton scattering (e.g., Jauch
& Rohrlich hereafter The integration domain1980, JR80).
U is deÐned by and [1 ¹ k ¹ 1 withoutc&¹ c¹ c'any restriction. Here and are the limiting electronc& c'energies, as in the previous case.

3.2. E†ect of Pair Production/Annihilation on Photons
The emissivity due to the annihilation of relativistic

electron-positron pairs (creating two photons) has been
analyzed by many authors before (e.g., Zdziarski 1980 ;

& Me� sza� ros & BrinkmannRamaty 1981 ; Yahel 1981 ;
hereafter We give here the ÐnalSvensson 1982a, S82a).

result using the notation of and refer the reader to thatS82a
paper for a detailed derivation. Let i \ 1, 2 bep

i
\ c

i
(1, b

i
) ;

the momenta of the electron and the positron, respectively,
in the C frame. Let k) be the momentum of one ofq1\ v(1,
the emitted photons. Here are the particle velocities andcb

iare the corresponding Lorentz factors, v is the photonc
ienergy, and k is its directional unit vector. The momentum

of the C frame itself is denoted by q \ (1, 0). We call the
center-of-momentum frame of the pair the CM frame and
the quantities in this frame appear with a suffix ““ cm.ÏÏ The
particle momenta in this frame are p1cm \ ccm(1, bcm),

andp2cm\ ccm(1, [bcm), q1cm \ vcm(1, kcm), qcm \ c
c
(1,

Here is the Lorentz factor of the electron or posi-[b
c
). ccmtron, is the photon energy, and is its directional unitvcm kcmvector (in the CM frame). The velocity of the CM frame as

measured in the C frame is and is the correspondingcb
c

c
cLorentz factor. Various directional cosines are deÐned

as follows : k, x, y, and z are the cosines of the angles
between the pairs of vectors (b1, b2), (kcm, bcm), (b

c
, bcm),

and respectively ; the angle between the planes(b
c
, kcm),

formed by the pairs of vectors and is(b
c
, kcm) (b

c
, bcm)

denoted by /. After analyzing the kinematics, we obtain

y \ccm\ )[12 ] c1c2(1 [ b1b2 k)/2], c
c
\ (c1] c2)/(2ccm),

and(c1 [ c2)/(2b
c
bcm c

c
ccm), z\ (v [ c

c
ccm)/(b

c
c
c
ccm),

x \ yz] )[(1[y2)(1[z2)] cos /. Now using equation
we obtain the pair emissivity(2.13)

g(v) \ cn
`

n~
4nv2

P
U
dk d/ <

i/1

2
[F

e
(c

i
) dc

i
]

bcm ccm
b
c
c
c
c1c2

Ad/
d)
B
cm

.

(3.5)

The di†erential cross section in the CM frame is given by

Ad/
d)
B
cm

\ r
e
2

4bcm ccm2
C
[1 ] 3 [ bcm4

2
(f

`
] f~)

[ 1
2ccm4

(f2̀ ] f~2 )
D

, (3.6)

where The integration domain U inf
B

\ 1/(1 ^ bcm x).
is given by [1 ¹ k ¹ 1,equation (3.5) c&¹ c1,2 ¹ c',

and 0 ¹ /¹ 2n, subject to the condition [1 ¹ z¹ 1,
which is equivalent to the condition k ; v) ¹!~(c1, c2,k ; v), whereccm(c1, c2, k) ¹ !

`
(c1, c2, !

B
\ vc

c
(1 ^ b

c
).

Here and are the limiting pair energies in thec& c'plasma.
Now we obtain the photon absorption coefficient due to

pair creation. Let the initial momenta of the photons be
p \ v(1, k) and p@\ v@(1, k@), with the usual meaning for
various symbols. If an electron-positron pair is produced,
then the CM-frame Lorentz factor of the electron is given
by where k is the cosine of the angleccm \J[vv@(1 [ k)/2],
between the vectors k and k@. Using we Ðndequation (2.17)

s(v) \ cnc
4
P
U
dk dv@Fc(v@)(1[k)ptotal(ccm). (3.7)

Since by integratingp(cc ] ee)\ 2bcm2 p(ee] cc), equation
we Ðnd(3.6),

ptotal(ccm) \ nr
e
2b

cm
ccm2

C(3 [ bcm4 )
bcm

ln
A1 ] bcm
1 [ bcm

B
[ 2 [ 2

ccm2
D

.

(3.8)

The integration domain U in is deÐned byequation (3.7)
[1 ¹ k ¹ 1 and where v* \ 2/[v(1 [ k)] isv* ¹ v@¹ v',
the pair creation threshold energy and is the limitingv'photon energy in the plasma.

3.3. Bremsstrahlung Emissivity
The bremsstrahlung emissivity of a pair plasma has been

analyzed in several papers (e.g., Haug 1975b, 1985c, 1987,
The Ðnal expression for the photon1989 ; Dermer 1986).

emissivity can be written as

gpair(v) \
car

e
2

8n2v
P
U
dk d) <

i/1

2
[F

e
(c

i
) dc

i
]
F12
o

]
C1
2

(n2̀ ] n~2 )
C1
*1

] n
`
n~

C2
*2

D
, (3.9)

where a is the Ðne-structure constant. The Ðrst term inside
the brackets represents the sum of the electron-electron and
the positron-positron contributions, and the second term
gives the electron-positron contribution. The expressions
for o, and along with the deÐnitions of theF12, C

i
, *

i
,

integration variables k and ) are given in the (seeAppendix
also The emissivity due to pair-proton bremsstrah-Fig. 1).



10
-2

10
-1

10
0

10
1

10
2

ε
10

-4

10
-3

10
-2

10
-1

S

10
-4

10
-3

10
-2

10
-1

S

(a)

(b)

Θ = 0.1 Θ = 1 Θ = 10

Θ = 0.1 Θ = 1 Θ = 10

908 PILLA & SHAHAM Vol. 486

FIG. 1.ÈEmissivity due to (a) electron-electron and (b) electron-
positron bremsstrahlung from a thermal plasma for three di†erent tem-
peratures. The dashed lines represent the emissivity due to pair-proton
bremsstrahlung (given here for comparison). The energy of the emitted
photon is v and where are the appropriateS \ 4nv3g(v)/(cn1n2 pTh), n1,2densities. These results agree with andHaug (1985c) Dermer (1986).

lung can be written as

gproton(v) \
cn

p
(n

`
] n~)

4nv2
P
1`v

c'
dcF

e
(c)b
Adp
dv
B
proton

, (3.10)

where is the cross section for this process (see(dp/dv)protone.g., Here the protons are assumed to be at rest.JR80).

4. COLLISION INTEGRALS FOR PAIRS

4.1. Compton Scattering of the Pairs
The e†ect of Compton scattering on the pair distribution

can be analyzed in a manner similar to that of the photon
Comptonization discussed in the previous section. Let p
and be the momenta of the incident electron and thep1photon, respectively. Let q and be their correspondingq1momenta after the scattering. We require the Ðnal electron
energy to be c. Hence, we set q \ c(1, b), where cb is the
velocity of the scattered electron. We write p \ c1(1, b1),and k). Usingp1\ v1(1, k1), q1\ v(1, q12 \ (p ] p1[ q)2\
0, we obtain a relation between the initial energy of the
photon and the Ðnal energy of the electron given by v1\ v8 1,where

v8 1 \ bcc1[ 1
a1c1 [ ac

. (4.1)

In this equation and b \a \ 1 [ b Æ k1, a1 \ 1 [ b1 Æ k1,Let k be the cosine of the angle between1 [ b Æ b1.the vectors b and The cosine of the angle between thek1.vectors b and is deÐned to be k@. The angle between theb1planes formed by the pairs of vectors (b, and (b, isk1) b1)deÐned to be /. Now the emission coefficient due to
Compton scattering can be written (see the Appendix for
details) as

g(c) \ cnc(n~ ] n
`

)r
e
2
P

du dk@ d/ dc1Fe
(c1)Fc(v8 1)

]
a1X

16nvco1

K dv8 1/dc
1 ] dv/dc

K
, (4.2)

where

X \ o1
o2

] o2
o1

] 2
A 1
o1

[ 1
o2

B
]
A 1
o1

[ 1
o2

B2
, (4.3)

while and The integration region iso1\ a1v8 1c1 o2\ av8 1c.given by [1 ¹ k, k@ ¹ 1, 0 ¹ /¹ 2n, and c& ¹ c1 ¹ c'subject to the condition that v&¹ v1¹ v'.
Next we consider the absorption coefficient due to

Compton scattering. Let p \ v(1, k) and q \ c(1, b) be the
initial momenta of the photon and the electron, respec-
tively. The photon energy in the rest frame of the incident
electron is given by x \ pq \ cv(1 [ bk), where k is the
cosine of the angle between the vectors b and k. As in ° 3.1,
it can be shown that

s(c) \ cnc
2
P

dk dvFc(v)(1[bk)ptotal(x) , (4.4)

where is given by The integrationptotal equation (3.4).
domain is given by [1 ¹ k ¹ 1 and v& ¹ v¹ v'.

4.2. Production and Annihilation of the Pairs
The analysis for this case is analogous to that for the pair

annihilation emissivity discussed above. Let bep
i
\ v

i
(1, k

i
)

the momenta of the photons in the C frame, where arev
itheir energies and are their directional unit vectors. Letk

ip \ c(1, b) be the momentum of one of the emitted particles.
Here cb is its velocity in the C frame and c is the corre-
sponding Lorentz factor. The momentum of the C frame
itself is denoted by q \ (1, 0). We denote the CM-frame
quantities with a suffix ““ cm.ÏÏ Let p1cm \ vcm(1, kcm),

andp2cm\ vcm(1, [kcm), pcm \ ccm(1, bcm), qcm \ c
c
(1, b

c
)

represent p, and q, respectively, in the CM frame. Thep1, p2,velocity of the C frame as measured in the CM frame is cb
cand is the corresponding Lorentz factor. Various direc-c

ctional cosines are deÐned as follows : k, x, y, and z are the
cosines of the angles between the pairs of vectors (k1, k2),and respectively. The angle(kcm, bcm), (kcm, b

c
), (bcm, b

c
),

between the planes formed by the pairs of vectors (b
c
, bcm)

and is deÐned to be /. We have(b
c
, kcm) ccm\ vcm \

[v1v2(1 [ k)/2]1@2, c
c
\ (v1] v2)/(2vcm), y \ (v2[ v1)/whereas(2b

c
c
c
vcm), z\ (c

c
ccm [ c)/*, *\ b

c
bcm c

c
ccm,

and x \ yz] [(1[ y2)(1[ z2)]1@2 cos /. We can now
write (see the for more details) the pair creationAppendix
emissivity as

g(c) \ cnc2
16nbc2

P
U
dk d/ <

i/1

2
[Fc(vi)dv

i
]

1[k
*
Adp
d)
B
cm

,

(4.5)

where the di†erential cross section is obtained by multi-
plying the one given by with The integra-equation (3.6) bcm2 .
tion domain is given by [1 ¹ k ¹ 1,v& ¹ v1,2 ¹ v',
and 0 ¹ /¹ 2n, subject to the condition [1 ¹ z¹ 1,
which is equivalent to where!~¹ c¹ !

`
, !

B
\

c
c
ccm(1 ^ b

c
bcm).

For the absorption coefficient due to pair creation, con-
sider an electron of momentum p \ c(1, b) annihilating with
a positron of momentum p@\ c@(1, b@). Their common
Lorentz factor in the CM frame is given by ccm\
[cc@(1 [ bb@k)/2]1@2, where k is the cosine of the angle
between the vectors b and b@. Setting v

i
\ c, v

j
\ c@, n

j
\ n

B
,

and ind
ij
\ 0, d)

j
\ 2n dk, F

j
\ F

e
, F

ij
\b

r
c
r
(cc@)~1
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we Ðndequation (2.17)

s
B
(c) \ cn

Y
2
P

dc@ dkF
e
(c@)

bcm ccm2
cc@

ptotal(ccm) . (4.6)

The integration is over the region andc&¹ c@ ¹ c'[1 ¹ k ¹ 1 without any restriction. Here the limiting ener-
gies of the pairs are denoted by and Finally, isc& c'. ptotalthe total cross section for the pair annihilation, which is
obtained by dividing the one given by withequation (3.8)
2bcm2 .

4.3. Bremsstrahlung Cooling Rate
Since this process is much slower than all other reactions

(roughly by a factor of aÈthe Ðne structure constant) we
can treat it to be continuous in the energy and momentum
(i.e., and use a continuity equation to describe it.*c/c> 1)
At any time t, the density of electrons in the energy interval
(c, c] dc) is given by Clearly is then

e
F

e
(c)dc. n

e
F

e
(c)c5 (c)

Ñux density of the electrons entering this interval, and
is that due to the electrons leavingn

e
F

e
(c] dc)c5 (c ] dc)

this interval (notice that is negative in the case of electronc5
cooling). The net contribution to the electron or positron
kinetic equation is now given by

L
Lt

[n
e
(t)F

e
(c, t)]\ [ L

Lc
[n

e
(t)F

e
(c, t)c5 ]4 C(c, t) . (4.7)

The right-hand side of this equation is essentially
4nbc2(g [ s f ) for the process. The cooling rate can beo c5 o
written as the sum

o c5 o\ E
ep

(c) ]
P
1

=
dc@F

e
(c@)[E

ee
(c, c@) ] E

eº
(c, c@)] . (4.8)

The cooling rates and for eB-eB, eB-eB, andE
ee

, E
eº

, E
epeB-proton processes, respectively, are given in the Appendix

(see also Fig. 2).

4.4. T he E†ect of Coulomb Collisions
Finally, we analyze the e†ect of Bhabha and colli-MÔller

sions (collectively termed as Coulomb collisions) on the

FIG. 2.ÈBremsstrahlung cooling time for (a) an electron and (b) a posi-
tron of energy c in a background thermal plasma (of electrons only) of
density In the former case we use the cooling rate and we use forn

e
. E

ee
E
eºthe latter. Remaining cooling rates vanish in this particular example. The

dimensionless cooling time is deÐned by Since the maint
c
\ o c5 o/(cn

e
pTh c).

time scale in the kinetics of the plasma is at higherB(cn
e
pTh), t

c
> 1,

energies this means that bremsstrahlung cooling is not very efficient at
these energies.

electron spectrum (see e.g., or for aBaring 1987b CB90
similar treatment and & Liang for a Fokker-Dermer 1989
Planck treatment of this problem). Here we ignore the di†u-
sion term (which arises from the second-order derivatives
with respect to energy) that would arise in the Fokker-
Planck expansion of the kinetic equation as well as the
contribution from the pair-proton collisions (which is a
much slower process). Consider an elastic scattering in
which an electron with momentum p exchanges momentum
q with a target particle in the plasma which is either an
electron or a positron. In both cases the collision cross
section diverges for o q o] 0, and it falls o† rapidly for larger
values of o q o. We deÐne h to be the angle by which the
incident electron is scattered. Small values of o q o corre-
spond to the small-angle collisions (h > 1). More precisely,
o q o+ o p o h when h is small. It is well known that the diver-
gence of the cross section for h ] 0 results in the domina-
tion of the relaxation process by the scattering events with
small angular deÑections. In many situations we can com-
pletely ignore the contribution from the collisions which are
producing large-angle deÑections. Let be the distance anln@2electron has to travel in order that its mean-square deÑec-
tion is +n/2 and suppose is the distance it has to travelL n@2so that it is deÑected by an angle of n/2 in a single scat-
tering, with a probability close to unity. It can be shown
that and where isL n@2+ 16c6 2/(45nn

e
r
e
2) L n@2/ln@2+ 2 ln"C, c6

the mean electron momentum in the background plasma.
The latter ratio, in a nonrelativistic plasma, turns out to be

but the expression for is di†erent in that case.8 ln"C, "CThe Coulomb logarithm for a relativistic plasma can be
shown to be In this equationln "C+ 37 ] (3 ln c6 [ ln n

e
)/2.

refers to the number of electrons per cubic centimeter.n
eWe consider only those plasmas for which is greaterln "Cthan a few, which means that only small-momentum-trans-

fer collisions are relevant. In this limit the Bhabha and
cross sections are equal. Therefore, we do not dis-MÔller

tinguish between electrons and positrons in the foregoing
analysis. Consider two distributions and of electrons.f1 f2The Boltzmann equation for can be written as a contin-f1uity equation in the momentum space as

L
Lt

f1(p)\ [ L
Lpi

S1i (p) , (4.9)

where is the Ñux vector in the momentum space (see theS1i for its deÐnition). Combining withAppendix equation (2.8)
the above continuity equation, we obtain

[g(c) [ s(c) f (c)]1\ C11(c) ] C12(c) , (4.10)

where

C1s(c) \ 4n2cr
e
2 ln "CB

L
Lc
P

dc@bb@c@2Q(c, c@) , (4.11)

while

Q(c, c@) \
C
f1(c)

L
Lc@

f
s
(c@)[ f

s
(c@)

L
Lc

f1(c)
D P

~1

1
dkB0(c, c@, k) .

(4.12)

The derivation of along with the deÐnitionequation (4.11),
of the quantities involved, is given in the HereAppendix.

comes from the collisions within the electrons of dis-C11tribution and comes from the collisions of electronsf1 C12of distribution with the electrons of distribution Inf1 f2.
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FIG. 3.ÈCoulomb collision time for (a) a power-law distribution with
an index d \ 2 relaxing in a thermal background and (b) a power-law
distribution relaxing through self-interactions. In both cases we have used

In general, the time it takes to establish thermal equilibrium isln "C\ 20.
many times that of the collision time. The spikes in these Ðgures indicate
that the emission and absorption rates balance at that energy because of
the form of (see the text).C1s

each case we have to use the appropriate electron density in
the Coulomb logarithm. Clearly, vanishes when is anC11 f1equilibrium distribution. In we give two examplesFigure 3
of Coulomb relaxation. Recall that for electrons
f (c) \ nF(c)/(4nbc2). In the Ðrst example we con-(Fig. 3a)
sider a nonthermal population of density and spectrumn1for cº 1 interacting with a thermal backgroundF1P c~2
of density is the background distribution) andn2? n1( f2temperature #. The electrons relax mainly through colli-
sions with the background and the reaction rate is deter-
mined by above is negligible). The dimensionlessC12 (C11collision time is deÐned by In thet

c
\ cn2 pTh f1(c)/oC12(c) o.second example we consider a power-law distribu-(Fig. 3b)

tion of density and an index d, relaxing through self-n1interactions (there is no thermal background). In this case
t
c
\ cn1pTh f1(c)/oC11(c) o.

5. THE COMPUTATIONAL METHOD

In the kinetic theory approach to nonequilibrium
plasmas that we have presented in the preceding sections,
the computational task is reduced to evaluating many colli-
sion integrals (for each energy bin, after each time step)
quickly and efficiently, without compromising on the Ñex-
ibility to handle many types of distribution functions. Now
we explain our new algorithm for adaptive Monte Carlo
integration which meets this demand. Our approach is
similar to the PSD method discussed in the introduction,
with the principal di†erence being that we are not using the
conventional MC method (based on uniform sampling) to
compute the transition probabilities (the collision integrals).
There are also some similarities between our method and
the LP method described in the introduction. Both methods
use statistical weights within a Monte Carlo scheme. In the
LP method, these weights are introduced in an ad hoc
fashion, based on the energy carried by the LPs. In our
method, we use probability weights (see below) to enhance
the sampling rate in those regions where the contribution to
the integral being evaluated is greater. But these weights
(known as importance weights) are generated internally,
through a minimal-variance prescription (see eqs. [5.12]

and Therefore, what we are using is a Monte Carlo[5.14]).
method based on importance sampling.

Being a kinetic theory approach, our method bears a lot
of resemblance to that of Both methods discretize theC92.
kinetic equations by following the particle and photon sta-
tistics with reference to energy bins which are equally
spaced logarithmically. Both methods have similar simplify-
ing assumptions about the isotropy and the spatial uni-
formity of the photon and pair distribution functions. Our
method is more Ñexible than that of because of theC92
adaptive nature of the underlying Monte Carlo scheme

uses numerical integration to compute the collision(C92
kernels). However, there are several di†erences between
these two methods. It is straightforward to deal with aniso-
tropic distributions in our method, except that some of the
collision integrals given in this paper require some modiÐ-
cations to incorporate them. Moreover, we have not taken
into account, the escape of photons and pairs from the
system. We use the exact collision kernels throughout. In
contrast to the method of our time-evolution code isC92,
entirely dynamic, i.e., we do not precompute and store any
quantities, which makes our method more Ñexible. The inte-
grands of some of the collision kernels have very narrow
peaks (““ integrable singularities ÏÏ) which are hard to evalu-
ate through numerical methods used before (e.g., andC92
references therein). Such ““ singularities ÏÏ can be easily inte-
grated by our method. No special attention is required
because the algorithm is adaptive ; it automatically adjusts
the sampling rate, iteratively, to a high value at such points.
Now we describe our computational method in detail.

5.1. Discretization of the Kinetic Equations
In order to simplify the analysis, we will consider only the

case for which andn
`

\ n~\ n
e

F
`
(c)\ F~(c) \ F

e
(c).

This can be easily extended to the more general case. Let the
net collision rate for the photons, due to Compton scat-
tering, be given by

Ac(v, t) \ 4nv2[gc(v, t)[ fc(v, t)sc(e, t)](ecaec) . (5.1)

The corresponding collision rate due to pair annihilation
and creation (ee ] cc) is denoted by t). In an analogousBc(v,way we deÐne t) and t) for the correspondingA

e
(c, B

e
(c,

collision rates for pairs. From the photon rate equation

L
Lt

[nc(t)Fc(v, t)]\ Ac(v, t) ] Bc(v, t) , (5.2)

we obtain

*Fc(v, t) \ [Ac(v, t) ] Bc(v, t)]*t [ Fc(e, t)*n
y
(t)

nc(t) ] *nc(t)
, (5.3)

where t),*Fc(v, t) \ Fc(v, t ] *t)[ Fc(v, *nc(t) \ n5 c(t)*t,
and is given below. Similarly, we can obtain t).n5 c(t) *F

e
(c,

The time increment *t for each time step is chosen in such a
way that

K L
Lt

fc(v, t)
K
*t ¹ lfc(v, t) and

K L
Lt

f
e
(c, t)

K
*t ¹ f

e
(c, t)

(5.4)

for all values of v and c. In our computation we have used
l\ 0.1, which means that the maximum change in orF

e
Fcin any energy bin, during any time step, is less than or equal

to 10%. Now we determine arising from the pair pro-n5 c
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cesses (there is no change in or arising from Comptonn
e

ncscattering). We have

P
0

=
dvAc(v, t) \ 0 and n5 c(t) \

P
0

=
dvBc(v, t) (5.5)

and two analogous equations for pairs. It can be shown that
the positron annihiliation and creation rates are given by

n5 ann(t)\
cn

e
2(t)
2
P

dk dc dc@F
e
(c, t)F

e
(c@, t)

bcm ccm2
cc@

p
ee?cc

(5.6)

and

n5 cr(t)\
cnc2(t)

8
P

dk dv dv@Fc(v, t)Fc(e@, t)(1[ k)pcc?ee
,

(5.7)

respectively. Here and are the total cross sec-p
ee?cc pcc?eetions, which are given in the previous sections. For each

positron annihilated or created, there will be a creation or
annihilation, respectively, of two photons. Therefore we
have

n5 c(t) \ 2[n5 ann(t)[ n5 cr(t)] and n5
e
(t) \ n5 cr(t) [ n5 ann(t) .

(5.8)

We remark that We have veriÐed equationsn5 ~\ n5
`

\ n5
e
.

and are satisÐed in all our computations for time(5.5) (5.8)
evolution, which implies that the particle number is con-
served. In addition, we have veriÐed the conservation of the
total energy after each time step. Now we can use equation

iteratively, to obtain the time evolution of and(5.3) F
e

Fcfrom the initial data, viz., 0), 0), and the initialF
e
(c, Fc(v,densities. We have discretized the energy (v and c) with

twenty energy bins per decade of energy and used a
logarithmic interpolation between these points to recon-
struct and for the subsequent time steps, which areF

e
Fcthen used in the collision integrals. Now the problem

reduces to an efficient evaluation of these multidimensional
collision integrals with complicated integrands. For this
purpose we have developed a new version of an adaptive
and iterative Monte Carlo method. It progressively adjusts
itself to the nature of the integrand. We describe our algo-
rithm below.

5.2. T he Adaptive Monte Carlo Method
A general purpose algorithm for multidimensional inte-

gration which is widely used in the experimental particle
physics is given by It is an iterative andLepage (1978).
adaptive scheme. A computer program implementing this
method, known as VEGAS, can be found in et al.Press

However, we have found that it has several short-(1992).
comings when applied to the type of integrals that arise in
the kinetic theory. Not only is the convergence weak in
some cases, we have found that the subroutine gave erron-
eous output for the high-energy tails of the distributions.
This is a signiÐcant obstacle because of the integrals over
energy that we have to perform at the end of each time step.
That integration makes the errors propagate to lower ener-
gies (where the results are otherwise accurate) during the
succeeding time steps. We will brieÑy explain the original
method by Lepage and then describe our modiÐed scheme
which can handle the integrals we need. First, by scaling the

integration variable, any multidimensional integral can be
written in the form

I\
P

drf (r) , (5.9)

where . . . , f is the function tor \ (z1, z2, z
n
), dr \<

i/1n dz
i
,

be integrated (which is continuous and well behaved) and
the integration is over the n-dimensional hypercube

i \ 1, 2, . . . , n. If we generate M ? 1 random0 ¹ z
i
\ 1,

points with a normalized probability density p(r) thenr
kthe integral can be approximated by

I^
1
M

;
k

f (r
k
)

p(r
k
)

. (5.10)

The variance is given by

p2[p]\ 1
M [ 1

C
dr

f 2(r)
p(r)

[I2
D

]
1

M[1
C
;
k

f 2(r
k
)

p2(r
k
)
[I2

D
. (5.11)

The optimal choice for p(r) which minimizes the variance is
derived from

d
dp
G
p2[p]] j

P
drp(r)

H
\ 0 , (5.12)

which implies that

p(r) \ o f (r) o
I

. (5.13)

This is the central theme of the importance sampling tech-
nique, sample more in the regions where the absolute value
of the function is larger. However, observe that the denomi-
nator is the integral itself ! Thus we need an algorithm to
solve it iteratively, starting with a reasonable guess for p.
Then we calculate the integral by using equation (5.10)
which then determines the new form for p(r), and so on. If
this process converges in a manageable number of iter-
ations, then we will have achieved our goal. The data
storage requirements of directly implementing this scheme
are well within the reach of many present-day computers.
The method by Lepage consists of a restrictive assumption
that the probability density is separable. For instance, when
n \ 2 and r \ (x, y), the separability means that p(x, y) \

and to minimize the variance we needp
x
(x)p

y
(y)

d
dp

x

G
p2[p

x
, p

y
]] j

x

P
0

1
dxp

x
(x)] j

y

P
0

1
dyp

y
(y)
H

\ 0 ,

(5.14)

which implies that

p
x
(x)\ M/01 dy[ f 2(x, y)/p

y
(y)]N1@2

/01 dx[/01 dy[ f 2(x, y)/p
y
(y)]1@2 , (5.15)

and a similar equation for For arbitrary dimensions,p
y
(y).

this scheme is implemented in the VEGAS subroutine, men-
tioned before. The motivation for assuming the separability,
according to is that it limits the storageLepage (1978),
requirements. It is not a good assumption in general. There-
fore we proceed to implement importance sampling
directly. All essential features of the algorithm can be cap-
tured in a one-dimensional example which we will consider
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Ðrst. Then we will show how it can be generalized to higher
dimensions. Consider the integral Let p(x)I\ /01 dx f (x).
be the normalized probability density we want. Suppose
N is an integer greater than unity and 0 \x0 \x1\ x2\

while for i \ 1, 2, . . . , N. We. . . \x
N

\ 1, *x
i
\ x

i
[ x

i~1will use the following discrete representation of the prob-
ability density :

p(x)\ 1
N*x

i
if x

i~1 ¹ x \ x
i
, (5.16)

so that for all i. Here the bin sizes/
xi~1
xi dxp(x)\ 1/N *x

ineed not be all equal, but all bins have the same probability
weight. If the bin sizes are equal, we will get a uniform
probability distribution leading to the crude Monte Carlo
method. Now the integral is approximated by I\

where are uniformly distrib-;
k/1M f (a

k
)/Mp(a

k
), 0 ¹ a

k
\ 1

uted random numbers. Typically M ? N. Let

u
i
\ N

M
;
k/1

M
c
i
(k) o f (a

k
) o , (5.17)

where if and is zero otherwise.c
i
(k)\ 1, x

i~1¹ a
k
\x

i
,

Clearly, Therefore is the;
i/1N u

i
*x

i
\I. w

i
\ u

i
*x

i
/I

importance weight associated with the ith bin. Since di†er-
ent bins contribute di†erent amounts to the integral, the
idea now is to Ðnd a new set of bin spacings . . . ,Mx1, x2,

so that all bins have equal importance weightx
N~1N, w0\

Let l be an integer (which depends on the bin location1/N.
i) such that

;
m/1

l
w

m
¹ iw0\ ;

m/1

l`1
w
m

. (5.18)

Then the new grid position for the ith bin can be obtained
from

x
i,new\ x

l,old] 1
w0

A
iw0[ ;

m/1

l
w
m

B
(x

l`1,old [ x
l,old) .

(5.19)

However, in practice we must damp the convergence so that
the contribution from the low-importance bins is not overly
suppressed. As in the method by Lepage, we will damp the
convergence by using the modiÐed importance weights
given by

w
i
@ \
C 1 [ w

i
log (1/w

i
)
Da

, (5.20)

which gives We now replace andw0@ \ ;
i/1N w

i
@/N. w0 w

iwith the corresponding primed quantities in the above
equations. The new probability density is now determined
by using and the process is repeated iter-equation (5.16)
atively. If it converges, we will have for all i,x

i,new +x
i,oldfrom which we can obtain the desired estimate for I. Now

we give the extension of this scheme to two dimensions. We
will assume that the number of bins is N for each dimen-
sion. A discrete representation of the probability density is
given by

p(x, y) \ 1
N2*x

i
*y

j
(5.21)

if and This does not mean thatx
i~1 ¹x \ x

i
y
j~1¹ y \ y

j
.

the probability density is separable because and are*x
i

*y
jnot independent in general. The integral is now estimated

by

I^
1
M

;
k/1

M f (a
k
, b

k
)

p(a
k
, b

k
)

, (5.22)

where and are uniformly distributed0 ¹ a
k
\ 1 0 ¹ b

k
\ 1

random numbers. Let

h
ij
\ N2

M
;
k/1

M
c
ij
(k) o f (a

k
, b

k
) o , (5.23)

where if and andc
ij
(k) \ 1, x

i~1 ¹ a
k
\ x

i
y
j~1¹ b

k
\ y

j
,

is zero otherwise. Now we deÐne andu
i
\ ;

j/1N h
ij
*y

j
Clearly,v

j
\ ;

i/1N h
ij
*x

i
. I\;

i/1N u
i
*x

i
\ ;

j/1N v
j
*y

j
.

Let and From these impor-w
xi

\ u
i
*x

i
/I w

yj
\ v

j
*

yj
/I.

tance weights for x and y grids we can obtain the corre-
sponding damped weights and proceed to iterate as if these
were two one-dimensional problems. Generalization to
arbitrary dimensions is now straightforward.

In all our applications we found that the values N \ 70
and a \ 1.3 (for the damping index) gave stable and satis-
factory results within at most 10 iterations or so. In general
it is advisable to start with a few thousand samples and after
several iterations, increase M (and retaining the resulting
grid) and further iterate, and so on. For many types of
integrals, of at most Ðve dimensions, we found that M'^
104 samples to be adequate. For all the results presented in
this paper, we have used the subroutine ran2 in et al.Press

for the random number generation. We Ðnd that our(1992)
method is faster than the crude Monte Carlo method (using
uniform sampling) by a factor of 10 or better, which is also
the case with the method by Lepage (when it is applicable).

6. TIME EVOLUTION AND EQUILIBRIA

Here we give an analytical description of the equilibrium
states of a pair plasma, in terms of the initial conditions. For
two speciÐc examples, we follow the relaxation toward equi-
librium using our time-evolution code. These examples are
meant to demonstrate that the whole formalism of this
paper (the collision integrals and the computational
method) actually works. We are considering a homoge-
neous, stationary, isotropic, and nonmagnetic system. There
are no radiative transfer or hydrodynamic e†ects. On short
timescales the kinetics is determinedt B tTh \ (n

`
pTh c)~1

by the rate equations alone (see We have seen thateq. [2.8]).
the collision integrals for these equations are nonlinear
functionals of the distribution functions. Given the initial
state of the plasma, we can solve these Ðrst-order coupled
and nonlinear integro-di†erential equations to determine
the time evolution of the distributions. The system is char-
acterized by the densities and and the spectranc, n`

, n
p

Fc(v)and all of which depend on time. Their values at t \ 0F
e
(c),

deÐne the initial state of the system. The total density of the
particles is given by and the total energyn8 \ nc] 2n

`
]n

p
,

density (including the rest energy of the pairs) is given by
where andu8 \ uc ] u~] u

`
, uc \ nc /0= vFc(v)dv u

B
\

The mean energy per particle is given byn
B

/1= cF
e
(c)dc.

We see that there will be no change in due tov6 \ u8 /n8 . n8
Compton scattering or the pair annihilation and creation. It
will change only as a result of bremsstrahlung (also double
Compton scattering and the pair annihilation into three
photons) which operates on a longer timescale (a ist B tTh/athe Ðne structure constant). However, remains constantu8
throughout. Therefore we can divide the approach of the
system toward equilibrium into two phases : (1) The faster
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phase in which both and remain constant and theu8 n8
system approaches to a state of kinetic equilibrium so that
the total reaction rates for Compton scattering and the pair
annihilation vanish (separately). This state is characterized
by a temperature and the chemical potentials and#3 k8 c k8

B
.

(2) The slower phase in which is constant but changes,u8 n8
mainly due to bremsstrahlung (or its inverse, and other
radiative processes) so that the system Ðnally reaches a
thermal equilibrium state characterized by a temperature

and a total density In this state the chemical poten-#0 n0.tials vanish (see below). If then which#0\#3 n0[ n8 ,
means that this phase is mainly the cooling of the plasma
through bremsstrahlung and other similar processes. On
the other hand, if then the plasma will heat up due#0[ #3
to the inverse bremsstrahlung (free-free absorption) and
other radiative processes.

6.1. Kinetic Equilibrium: T he Densities
and the T emperature

Consider Compton scattering of an electron of energy c
and a photon of energy v. The respective energies after the
scattering are taken to be c@ and v@. If the total reaction rate
vanishes, then we have

f (c) fc(v)
C
1 ] j03

2
fc(v@)

D
\ f (c@) fc(v@)

C
1 ] j03

2
fc(v)
D

, (6.1)

where we have retained the Bose-Einstein enhancement
factor for the photons and The factor half in thisj0\ h/mc.
equation takes into account the polarization degeneracy of
the photon states. Using the general form of the distribution
functions

fc(v) \
2

j03[exp (v[ kc)/#c [ 1

and (6.2)

f
B

(c)\ 2
j03

exp
Ak

B
[ c

#
B

B

and we Ðnd We denote thisequation (6.1), #
`

\#c \ #~.
common temperature by Notice that does#3 . equation (6.1)
not yield any condition on the chemical potentials. Now
requiring that the total reaction rate should vanish for the
pair annihilation and creation as well, we Ðnd

f
`
(c

`
) f~(c~)

C
1 ] j03

2
fc(v1)

DC
1 ] j03

2
fc(v2)

D
\ fc(v1) fc(v2) ,

(6.3)

where are the pair energies and are the photonc
B

v1,2energies. Using the fact that the pairs and the photons have
a common temperature we obtain from this equation#3 ,

If there are no ions in the plasma (i.e.,k8 ~] u8
`

\ 2k8 c. n
p
\

then so that By assuming that0) n8 ~ \ n8
`

k8 ~ \k8
`

\k8 c.and for the rel-exp [(v[ k8 c)/#3 ]? 1 exp [(c[ k8
B
)/#3 ]? 1,

evant energies, we obtain the distribution functions in the
kinetic equilibrium state to be

fc(v) \
2
j03

exp
Ak8 c[ v

#3
B

and f
B

(c) \ 2
j03

exp
Ak8

B
[ c
#3

B
.

(6.4)

The densities are given by

n8 c \
P
0

=
4nv2fc(v)dv\ 16n

A#3
j0

B3
exp

Ak8 c
#3
B

(6.5)

and

n8
B

\
P
1

=
4ncJc2[ 1 f

B
(c)dc\ 8n

j03
#3 K2

A 1
#3
B

exp
Ak8

B
#3
B

,

(6.6)

where is the nth-order modiÐed Bessel function of theK
nsecond kind. Using the relation we Ðnd2k8 ~c\ k8 ~] k8

`
n8 c \ 4f2n8

`
(n

p
] n8

`
) , (6.7)

where Finally, from the equationf\ #3 2/K2(1/#3 ). n8 c ] 2n8
`we obtain the densities and in terms of] n

p
\ n8 , n8 c n8

`
n8

and When we obtain a quadratic equation forn
p
. fD 1 n8

`
.

It turns out that only one of its roots is physical (i.e., both n8 cand are nonnegative). The physical root is given byn8
`

n8
`

\ 12[(n8 [ n
*
)(1[f2)~1[ n

p
] , (6.8)

where When f\ 1 (which isn
*

\ f[n8 2[ (1 [ f2)n
p
2]1@2.

true when we get Therefore#3 \ 0.493) n8
`

\ (n8 [ n
p
)2/(4n8 ).

we have the necessary densities in terms of the temperature.
When there are no ions these solutions take a(n

p
\ 0)

simple form given by

n8 ~\ n8
`

\ K2(1/#3 )
2[#3 2] K2(1/#3 )]

n8

and (6.9)

n8 c\
#3 2

#3 2] K2(1/#3 )
n8 .

Now we determine the temperature in terms of the initial
data. We have

k8 c \
P
0

=
4nv3fc(v)dv\ 3#3 n8 c (6.10)

and

k8
B

\
P
1

=
c2Jc2[ 1 f

B
(c)dc\ 3#3 K2(1/#3 ) ] K1(1/#3 )

K2(1/#3 )
n8
B

.

(6.11)

Using the energy conservation equation k8 \ k8 c] k8 ~] k8
`
,

we get the temperature as an implicit function of andk8 , n8 ,
In the limit where we haven

p
. n

p
\ 0,

k8 c\
3#3 3

#3 2] K2(1/#3 )
n8

and (6.12)

k8 ~] k8
`

\ 3#3 K2(1/#3 )] K1(1/#3 )
#3 2] K2(1/#3 )

n8 .

In this case, the equation for the temperature takes the form

3#3 3] 3#3 K2(1/#3 ) ] K1(1/#3 ) \ v6 [#3 2] K2(1/#3 )] ,

(6.13)

where is the mean energy per particle (which is determinedv6
by the initial conditions).



10
-3

10
-2

10
-1

10
0

10
1

10
2

ε

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
γ(ε

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
γ(ε

)

10
-2

10
-1

10
0

10
1

10
2

ε

t = 5tTh t = 10tTh

t = 20tTh t = 30tTh

10
-3

10
-2

10
-1

10
0

10
1

10
2

(a)  ε  and  (b) γ -1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
e(

γ)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
γ(

ε)

(a)

(b)

10
-3

10
-2

10
-1

10
0

10
1

10
2

γ -1

10
-4

10
-3

10
-2

10
-1

10
0

F
e(

γ)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

F
e(

γ)

10
-2

10
-1

10
0

10
1

10
2

γ -1

t = 5tTh t = 10tTh

t = 20tTh t = 30tTh

914 PILLA & SHAHAM Vol. 486

6.2. T hermal Equilibrium: Densities and the T emperature
Here we determine the Ðnal temperature and densities

resulting from the radiative processes in the second phase.
We have Let andk~ ] k

`
\ 2kc \ 0. k

`
\ [k~\ k0Clearlyz\ exp (k0/#0).

n
B

\ 8n
j03

#0 K2(1/#0)zB1 and nc \ 16n#03
j03

. (6.14)

Using the fact that we can show thatn~\ n
p
] n

`
,

n~] n
`

\ 16n
j03

#0 K2(1/#0)J1 ] x2 , (6.15)

where In the nonrelativisticx \ j03 n
p
/[16n#0K2(1/#0)].limit the pair density is given by(#0> 1)

n~] n
`

\ 4
j03

(2n#0)3@2 exp ([1/#0)

]
C
1 ] 15

8
#0] 105

128
#02
D
J1 ] x2 . (6.16)

It can be shown that the pair energy density is given by

u~] u
`

\ 16n
j03

[3#02K2(1/#0)] #0K1(1/#0)]J1 ] x2 .

(6.17)

Finally, energy conservation implies

8n5#04
15

] 16n[3#02K2(1/#0)

] #0K1(1/#0)]J1 ] x2 \ j03 k8 , (6.18)

where the Ðrst term on the left-hand side is the contribution
from the photons. We can solve this equation for in#0terms of and x (equivalently This completes the ana-k8 n

p
).

lytical description of the thermal equilibrium state in terms
of the initial data. This treatment is exact and is valid for all
energies (relativistic or otherwise) and densities (so long as
the plasma is nondegenerate).

6.3. T ime Evolution of the Spectra : T wo Examples
Now we consider the time evolution of the plasma for

two speciÐc initial conditions. In the Ðrst case the initial
photon and the pair distributions are Ñat (i.e., F is constant)
and nonzero within the energy (in MeV) interval
0.1¹ vmc2¹ 10 and 0.1 ¹ (c[ 1)mc2¹ 10. The initial
densities are taken to be cm~3.nc\ n

`
] n [ \2 ] 1020

For this case we Ðnd a kinetic-equilibrium temperature
and the corresponding densities are found to be#3 \ 3.43,

cm3 andn8 ph\ 1.36] 1020 n8 ~ \ n8
`

\ 1.32 ] 1020 cm3.
Monte Carlo evolution of the spectra for this case are
shown in Figures and They agree well with the analyti-4 5.
cal kinetic-equilibrium solutions. For this case, as well as
the second one, we have used withtTh\ (cpTh n)~1,
n \ 2 ] 1020 cm3. In the second case we start with the same
densities of the photons and pairs, and the initial distribu-
tions are conÐned to the same band width as above. The
only di†erence is that and withFc(v)P v~2 F

e
(c) P c~2,

suitable normalizations. In this case we obtain a kinetic-
equilibrium temperature and the corresponding#3 \ 0.663
densities are found to be cm~3 andn8 ph \ 1.73 ] 1020 n8 ~ \

cm~3. Monte Carlo spectra for this casen8
`

\ 1.1] 1020

FIG. 4.ÈTime evolution of the photon spectrum (solid line) starting
from a Ñat initial spectrum (dashed line). Initial pair spectrum is Ñat as well.
It is clear that the softer end of the spectrum relaxes Ðrst. The same pheno-
menon is observed in the pair distribution (not shown here).

FIG. 5.ÈFinal Monte Carlo spectra (the solid histograms) at t \ 45tThcompared with the analytical solution (dashed curves) for (a) the photons
and (b) the pairs, starting from the Ñat initial spectra. See for details.° 6.3

FIG. 6.ÈEvolution of the photon spectrum (solid line) starting from the
power-law (d \ 2) distributions of the photons (dashed line) and the pairs
(evolution not shown here). As in the previous example, the relaxation is
faster at lower energies.
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FIG. 7.ÈFinal Monte Carlo spectra (solid histograms) at com-t \ 40tThpared with the analytical solution (dashed curves) for (a) the photons and
(b) the pairs, starting from the power-law initial spectra. It is evident that
the high-energy tails persist for a long time, becoming steeper with time
(analogous to the relaxation in a nonrelativistic plasma), but the number of
particles (and the energy) in these tails is less than a few pecent of the total.

are shown in Figures and Once again they are in a good6 7.
agreement with the analytical solution. We have veriÐed the
number and energy conservation after each time step. The
Ðnal densities are found to agree with the predicted values
within an accuracy of 10% or better (which can be
improved by using more energy bins). In both cases the
kinetic-equilibrium solution is moderately relativistic. It is
clear from Figures and that the low-enegy part of the5 7
spectrum relaxes before the high-energy end. The cross sec-
tions (and hence the reaction rares) decrease with the
energy, thereby making the relaxation slower at higher
energies. A part of the deviation from the analytical solu-
tions that we see in Figures and (in the high-energy tails)5 7
could be an artifact of our sparse (logarithmic) binning at
higher energies. It can be rectiÐed by using more bins in the
high-energy end (and more computing time). For the above
cases the Ðnal thermal-equilibrium temperatures turn out to
be and respectively.#0\ 4.36] 10~3 #0\ 2.98] 10~3,

7. CONCLUSIONS

We have developed a new computational method for
solving the Boltzmann equations of a pair plasma which is
applicable for arbitrary energies (in the X-ray and c-ray
bands), densities, and distribution functions. We have fully

analyzed all relevant microscopic processes in a pair plasma
viz., Comptonization, the pair creation and annihilation,
bremsstrahlung and the associated cooling, and Coulomb
collisions. The spectra from the individual collision inte-
grals, using our expressions and the numerical method
(for Compton scattering, pair annihilation, and
bremsstrahlung), are in a good agreement with several pre-
vious results obtained by using di†erent methods (e.g.,

The analysis given in this paperS82a ; CB90 ; Dermer 1986).
can be very easily extended to an inhomogeneous and
anisotropic plasma. It will only change some of the collision
integrals and add a spatial component to the kinetic equa-
tions. That will result in an increase in the computational
time but it will still be manageable by the present-day work
stations. Presence of the magnetic Ðelds will alter the
kinetics (through synchrotron emission), and it can be
modeled along the same lines as that of We have devel-C92.
oped a modiÐed version of the adaptive Monte Carlo
method which is very efficient and robust. It is faster than
the crude Monte Carlo method (using uniform sampling) by
at least a factor of 10 and is more Ñexible than the numerical
integration methods (which do not use random sampling)
which are used in the past. We have obtained the analytical
equilibrium solutions for a general set of initial conditions.
Finally, we have tested our Monte Carlo evolution scheme
for two speciÐc sets of initial conditions and found that the
results compared favorably with the corresponding analyti-
cal solutions. The method is found to be very stable. In each
of the examples considered, the program has analyzed a
total of D1010 collision events. This stability, accompanied
by its generality and the inherent Ñexibility, makes this tech-
nique suitable for many astrophysical applications. In par-
ticular, this formalism can be applied to the expanding pair
plasmas in the c-rayÈburst sources in their Ðnal stages of
evolution (when they are only moderately optically thin),
AGN, and the emission from hot accretion discs near black
holes.
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APPENDIX

A.1. COMPTON SCATTERING RATE FOR PHOTONS

The cross section in the C frame is given by

dp
dP

\ 1
v2

dp
d)

d(v[ v8 ) , (A1)

with Here d) is an inÐnitesimal solid angle around the direction k (similarly d)@ is deÐned withd(v [ v8 ) \ d(v1[ v8 1)dv8 1/dv.
respect to k@). It is easy to see that Nowdv8 1/dv\ m2aa1~1.

Adp
d)
B
Cvframe

\ d)@
d)
Adp
d)
B
Rvframe

. (A2)



916 PILLA & SHAHAM Vol. 486

Since v2d)\ v@2d)@ we get d)/d)@\ (ca)2. Finally,

Adp
d)
B
Rvframe

\ r
e
2*
2m3 (A3)

is the Klein-Nishina formula in our notation, where *\ m2[ m sin2 h@] 1. This leads to

dp
dP

\ r
e
2

v2a1

*
2c2am

d(v1[ v8 1) . (A4)

In we set and Clearlyequation (2.13) brel\ 1, F12 \ a1, n1\ nc, n2\ n~ ] n
`

, F1\ Fc, F2\ F
e
, v2\ c, d12 \ 0.

a \ 1 [ bk@, where kA \ kk@ ] [(1[ k2)(1[k@2)]1@2 cos /, and b \ 1 [ k. These sub-d)1 d)2\ 2n dk dk@d/, a1\ 1 [ bkA,
stitutions lead to equation (3.2).

A.2. BREMSSTRAHLUNG EMISSIVITY

Here we derive and explain the notation used in that connection. We are interested in the processes in whichequation (3.9)
two particles of momenta i \ 1, 2 radiatively scatter on each other to produce a photon of momentum p \p

i
\ c

i
(1, b

i
),

v(1, k). Here are the particle velocities in the C frame and are the corresponding Lorentz factors, v is the energy of thecb
i

c
iemitted photon, and k is its directional unit vector. Let k, k@, and kA be the cosines of the angles between the pairs of vectors

k), and k), respectively. The angle between the planes formed by the pairs of vectors and k) is(b1, b2), (b1, (b2, (b1, b2) (b1,deÐned to be /. We have kA \ kk@ ] [(1[k2)(1[k@2)]1@2 cos /. In because of the isotropy of the distributionequation (2.13),
functions, we can write where d) is an inÐnitesimal solid angle around k. We deÐned)1 d)2\ 2n dk d), (dp/dv)

i
\

The case i \ 1 refers to the eB-eB process and the case i\ 2 refers to the eB-eY bremsstrahlung. It is shownv2 / d)(dp/dP)
i
.

by thatHaug (1975b)

Adp
dv
B
i
\
7ar

e
2 v
n
P

d)
C

i
o*

i
0

if v¹ v* ,

otherwise ,
(A5)

where and while u\ [2(f] 1)]1@2,*1\ u(u2[ 4)1@2, *2 \ 2(f2[ 1)1@2, o \ [u2 [ 2(x1] x2)]1@2, f\ p1p2 \ c1c2(1and Here a is the Ðne-structure constant. Finally,[ b1b2 k), x1\ pp1\ vc1(1 [ b1k@), x2\ pp2\ vc2(1 [ b2 kA).

v* \ f[ 1
c1] c2[ [(c1] c2)2[ 2(f] 1)]1@2 , (A6)

and

C
i
\
GJo2[ 4

n
P

Ad)@
H
i
. (A7)

The cross section was computed by eq. [A1]) and by eq. [A1]). This latter cross section hasC1 Haug (1975a, C2 Haug (1985a,
some minor errors, and the corrections are given in For we have followed the notation of Haug except thatHaug (1985b). C1,2d)@ was called in and it was called in in those papers. Going back to we have to setd)

p1@
C1 d)

q{ C2, equation (2.13) d12 \ 1
for the case i \ 1. Hence In the second case and We have andn1n2 ] 12(n2̀ ] n~2 ). d12 \ 0 n1n2] n

`
n~. F1\ F2\ F

e
v
i
\ c

ifor i \ 1, 2. With these substitutions the desired result follows. In the present notation andF12 \ (f2[ 1)1@2/c1c2d)\ dk@ d/. The integration domain U is speciÐed by [1 ¹ k, k@ ¹ 1, and 0 ¹ /¹ 2n, subject to thec&¹ c1,2 ¹ c',
condition that k) º v.v*(c1, c2,

A.3. COMPTON SCATTERING RATE FOR PAIRS

The cross section can be written as (see, e.g., JR80)

p \ r
e
2

2vco1

P
dq

f
d(4)(q ] q1[ p [ p1)X , (A8)

where q \ cb, while X is given by Here and Indq
f
\ d3q d3q1, q1\ vk, equation (4.3). o1\ pp1\ qq1 o2\ pq1 \ p1q.

we can remove three of the delta functions by integrating over d3q@. Using the conservation of three-momentumequation (A8)
we obtain and while k and k@ are deÐned in After some straightv2 \ (c1b1] v1k1[ cb)2 dv/dc\ (cb [ c1b1k@ [ v1k)/bv, ° 4.
forward manipulations we Ðnd

dp
dP

\ r
e
2

2cvo1

K dv8 1/dc
1 ] dv/dc

K
Xd(v1[ v8 1), (A9)

where dP\ d3q \ bc2 dc d), and d) is the inÐnitesimal solid angle around the direction b. Now in we setequation (2.13)
and Clearly a \ 1 [ bk, wherebrel\ 1, F12\ a1, n1 \ nc, n2\ n~] n

`
, F1\ Fc , F2\ F

e
, d12\ 0, v2\ c1. a1\ 1[b1kA,

kA \ kk@ ] [(1[k2)(1[k@2)]1@2 cos /, and Finally, These substitutions lead tob \ 1 [ bb1k@. d)1d)2\ 2n dk dk@ d/.
equation (4.2).
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A.4. PAIR CREATION RATE

Let be the inÐnitesimal solid angles around for i \ 1, 2. InÐnitesimal solid angles around b and are denoted by d)d)
i

k
i

bcmand respectively. In we have because of the isotropy. We deÐne dp/d)cm, equation (2.13) d)1d)2\ 2n dk d)
dc\ bc2 / d)(dp/dP), where dP\ bc2 dc d). We set and It can be shownn1 \ n2\ nc, d12 \ 1, F12 \ 1 [ k, F1\ F2\ Fc.that

dp
dc

\
P

d)cm
dccm
dc
A d2p
dc d)

B
cm

\
P

d)cm
dccm
dc
Adp
d)
B
cm

H(vcm)d(ccm[ vcm) , (A10)

where H is the Heaviside step function which is zero for negative arguments and is unity otherwise. The latter imposes the pair
creation threshold. It can be easily seen that The delta function in the last equation ensures energy conserva-d)cm\ dz d/.
tion. It can be written in the form where and This isd(ccm[ vcm) \ o dz8 /dccm o d(z[ z8 ), z8 \ (a

c
ccm [ c)*~1 *\ b

c
bcm c

c
ccm.

the solution to the equation (i.e., Finally, After all these substitutions inc\ c
c
ccm(1 [ b

c
bcm z) pq \ pcm qcm). o dz8 /dc o\*~1.

we arrive atequation (2.13) equation (4.5).

A.5. BREMSSTRAHLUNG COOLING FUNCTIONS

Here we give the cooling functions used in The energy radiated per unit time in eB-proton collisions is givenequation (4.8).
by

E
ep

(c)\ cn
p

P
0

c~1
dv v
Adp
dv
B
proton

, (A11)

where the protons are assumed to be at rest. Here v is the energy of the emitted photon and dp/dv is the cross section (see, e.g.,
For we start from of After some algebra we arrive atJR80). E

ee
equation (3.5) Haug (1975b).

E
ee
(c, c@) \ c(n2̀ ] n~2 )

2n
e

c] c@
cc@

P
~1

1
dk p

c
Q

ee
(v

c
, p

c
) , (A12)

where and f\ cc@(1[ bb@k), while k is the cosine of the interaction angle. Averagingv
c
\ [(f ] 1)/2]1@2, p

c
\ [(f [ 1)/2]1@2,

over this angle (k-integration) gave rise to the factor of half above. Presence of in the denominator is a consequence of ourn
edeÐnition of The cooling function which is accurate to D6% or better, is given by equation (3.15) ofE

ee
. Q

eº
, Haug (1975b).

We reproduce it here for convenience :

Q
ee

B 8ar
e
2 p

c
2

v
c

C
1 [ 4

3
P
c

v
c
] 2

3
A
2 ] p

c
2

v
c
2
B

ln (v
c
] p

c
)
D

, (A13)

where a is the Ðne-structure constant. For eB-eY process we get

E
eº
(c, c@) \ cn

`
n~

2n
e

c] c@
cc@

P
~1

1
dk p

c
Q

eº
(v

c
, p

c
) . (A14)

The cooling function is given by equations (26) and (28) of For the sake of convenience, we reproduce itQ
eº

Haug (1985c).
here :

Q
eº

\g
323 ar

e
2 ;

i/0

4
a
i
p
c
i

16ar
e
2[v

c
ln (v

c
] p

c
)[ 16v

c
] ;

i/0

2
b
i
v
c
~i]

if E
c
¹ 300 KeV ,

otherwise ,
(A15)

where and Herea0\ 1.096, a1 \[0.523, a2\ 0.1436, a3\ 1.365, a4\ [0.532, b0\[0.726, b1\ 1.575, b2\ [0.796.
E
c
\mc2v

c
.

A.6. LANDAU COLLISION INTEGRAL FOR COULOMB COLLISIONS

The Ñux vector (see & Pitaevskii hereafter is given byLifshitz 1981, LP81)

S1i (p) \ ;
s/1

2 P
d3p@
C

f1(p)
L

Lp@j
f
s
(p@) [ f

s
(p@)

L
Lpj

f1(p)
D
Bij . (A16)

The superscripts i, j in this equation denote the components of three-vectors or tensors. In the summation overequation (A16)
j is implicit. The components of momenta are given by pi\ cbi and p@i\ c@b@i, for i \ 1, 2, 3. We have d3p@\ b@c@2 d)@. Let
f\ cc@(1 [ bb@k), where k is the cosine of the interaction angle. The tensor Bij (see is given byLP81)

Bij\ 2ncr
e
2 ln "C f2

cc@(f2 [ 1)3@2 [(f2[ 1)dij[ biBjc2[ b@ib@jc@2] (bib@j] bjb@i)cc@f] , (A17)

where we have made some slight modiÐcations to take into account the dimensions of the distributions and the momenta.
This tensor satisÐes the identify for i\ 1, 2, 3. For istropic distributions we have;

j/13 Bij(bj [ b@j) \ 0, Lf
s
/Lpj \bjLf

s
/Lc.
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Using this fact and the previous identify we obtain

S1i \
P

dc@ d)@b@c@2D1(c, c@) ;
j/1

3
Bijbj , (A18)

where

D1(c, c@) \ ;
s/1

2 C
f1(c)

L
Lc@

f
s
(c@) [ f

s
(c@)

L
Lc

f1(c)
D

. (A19)

We choose a coordinate frame in which b1\ b, b2,3\ 0, b@1\ b@k, b@2\ b@(1 [ k2)1@2, and b@3\ 0. Also d)@\ 2n dk. With
these substitutions we Ðnd

L
Lt

f1(c) \ [b
L
Lc
P

2n dk dc@bb@c@2BD1(c, c@) , (A20)

where andB\ 2ncr
e
2 ln "CB0

B0\ f2
cc@(f2[ 1)3@2 (f2[ 1 [ b2c2[ b@2c@2k2] 2bb@cc@kf) . (A21)

The integral in is the Landau collision integral for small-angle deÑections. This leads to the required result.equation (A20)
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