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Summary. We give simple but accurate numerical fits to various two-body
rates in relativistic thermal plasmas, in the temperature range k7, ~ 50 keV—
1 MeV. The processes we discuss are bremsstrahlung, Coulomb heating and
electron—positron pair production and annjhilation. In particular we present a
fit to the thermal electron—electron bremsstrahlung spectrum which is
accurate to better than 5 per cent. We also include the results of some other
workers, for completeness. Our results are suitable for semi-analytic or com-
puter modelling of hot plasmas.

1 Introduction

Active galactic nuclei, gamma-ray bursters and certain compact binary sources (e.g. Cygnus
X-1) emit radiation at energies greater than 100keV. Physical modelling of these sources,
therefore, requires a detailed knowledge of electron—photon and electron—particle reactions
at relativistic electron energies. Although there has recently been considerable progress in
understanding astrophysical plasmas at relativistic energies (Svensson 1982a; Lightman &
Band 1981; Stepney 1983), further progress requires accurate, simple formulae for the
relevant physical processes. Cross-sections for the important processes are usually available;
however, they are often expressed as complicated special functions, or multidimensional
integrals, or both. We have computed simple fits to several cross-sections for thermal
electron distributions, in particular the electron—electron bremssirahlung cross-section. Our
results, together with those of other workers, which we have included for completeness, can
be used to model all the important processes in a thermal plasma analytically or numerically,
with the exceptions of particle—particle pair production and electron—positron brems-
strahlung.

2 Bremsstrahlung
2.1 ELECTRON-PROTON BREMSSTRAHLUNG
The cross-section in the Born approximation is given by Heitler (1954). Assuming that 7', is
small enough to neglect the protons’ motion, the spectral emissivity is then
dEe,

oo do
—— =N,c w — BN d 1
= pf = BNy )

1+w
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where w =hv/mec? is the dimensionless photon energy, 6 = kT/mec? is the dimensionless
temperature, Ne (7) = Nev’8 exp (— v/0)/0 K, (1/0) is the Maxwellian electron energy distri-
bution and K, is a modified Bessel function. NV, and NV, are the electron and proton number
densities. The integral (1) can be evaluated with an error of less than 2 per cent for 6 > 0.1
using four-point Gauss—Laguerre quadrature. Gorecki & Kluzniak (1981) give a fit to the
spectrum which, due to its complexity, has no advantage over direct quadrature.

The total emission can be found by integrating equation (1) over the photon energy.
Svensson (1982a) gives the following fit:

dE,

dV;l‘= e paTcafmec2F(0) (2)
172
4(=) [1+1.781 613, <1 (32)
3
BREL
. [In (20 exp ( — yg) +0.42) +1.5]; 1<6 (3b)
s

af is the fine structure constant, op is the Thomson cross-section and <yg is Euler’s constant
~0.5772.

2.2 ELECTRON—_ELECTRON BREMSSTRAHLUNG

The cross-section for this process is much more complicated than that for electron—proton
bremsstrahlung; however, Haug (1975a) has obtained an expression which can be integrated
numerically (see Appendix 1 for details). The photon spectrum is given by:

dNee
dVdtdw

where x = w/0. We have fit G (x, 0) at 13 temperatures between 50keV and 1 MeV with an
error of less than 2 per cent for 0.05 < x <10.0. The fit is:

=NZorcasexp (—x)G(x,0)/x @)

G(x,0)=(A+Bx)In(1/x)+C+Dx; 005<x<1.1 (5a)
=ax?+8x +v+8/x; 1.0<x<10.0 (5b)

where the coefficients a, 8, v, 8 and A4, B, C, D are given in Table 1. The coefficients can be
interpolated to give spectra with errors of less than 5 per cent. The total emission can be
obtained either by numerical quadrature of equation (3.20) in Haug (1975b), or by integra-
tion of our fit to equation (4) to give:

dE e

dth=N§ orcagmec>0%(0.7974 +0.164B +0.632C + 0.264D +1.839a + 0.7368

+0.3687y +0.2196). (6)

The error in equation (6) is also less than 5 per cent.

For temperatures above 1 MeV the ultra-relativistic approximation (Alexanian 1968) gives
spectra with errors of less than 5 per cent. Below 50 keV the non-relativistic formula (Haug
1975b) is accurate to better than 5 per cent for w/0 <1.

Gould (1980, 1981) has calculated the first-order corrections to the non-relativistic
electron—proton bremsstrahlung spectrum due to relativistic effects, electron—electron
bremsstrahlung and corrections to the Born approximation. The resulting spectral emissivity
is accurate to 1 per cent for T~ 108K (8 ~ 0.02).
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Table 1. Coefficients for the fit to the electron—electron brems-
strahlung spectrum x = w/6. The low energy portion is fitted at
x = 0.05, 0.15, 0.5063, 1.139. The high energy portion is fitted at
x=1.139, 2.563, 5.767, 10.0. In the given ranges the fits (to the
computed values) are better than 1 per cent.

Low energy: 0.05 <x<1.1

kT/keV A B C D
50 1.584 0.578 4.565 2.091
75 1.357 0.437 3.842 1.855
100 1.197 0.291 3.506 1.672
150 1.023 0.204 3.036 1.593
200 0.883 0.0835 2.831 1.487
300 0.700 —0.0494 2.545 1.364
400 0.572 -0.139 2.352 1.254
500 0484 —-0.181 2.175 1.179
600 0417 -0.209 2.028 1.108
700 0.361 —0.240 1.914 1.030
800 0.322 —0.244 1.795 0.982
900 0.286 —0.257 1.705 0.923
1000 0.259 —0.258 1.617 0.879
High energy: 1.0 <x <10.0
kT/keV « g8 v )
50 0.0387 0.523 5.319 0.782
75 0.0633 0.540 4412 0.689
100 0.0862 0.569 3.897 0.633
150 0.128 0.596 3.383 0.523
200 0.159 0.658 2.974 0.532
300 0.208 0.633 2.738 0.326
400 0.234 0.643 2424 0.302
500 0.245 0.695 2.025 0.394
600 0.248 0.729 1.716 0.453
700 0.247 0.756 1.457 0.500
800 0.243 0.763 1.271 0.515
900 0.239 0.755 1.140 0.508
1000 0.235 0.735 1.060 0.478

3 Electron—positron pair production
3.1 PHOTON—-PHOTON

The cross-section for this process can be found in Jauch & Rohrlich (1980). Unfortunately,
for a general photon distribution the pair production rate is a complicated six-dimensional
integral over both photon momenta. In the case of isotopic photon distributions consider-
able simplification is possible analytically and Weaver (1976) has evaluated this rate. For
cylindrically symmetric photon distributions (e.g. radiative transfer in a slab) we have the
reaction rate (per unit volume per unit time):

R,y =4mc J. ny (W, M) N2 (Wa, Ma) Wi wydw dwyduy du,

w+ 3
X J‘ w’o(w)dw (7)

oo @I 0@ -]
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where w; = wyw,[1—cos (81 +6,)]/2 and u =cos 6. The w integral can be evaluated semi-
analytically with the aid of a 2-point Gauss—Legendre quadrature to better than 0.5 per cent
(see Appendix 2).

3.2 PHOTON—PROTON

The threshold photon energy in the proton’s rest frame is y = 2. The cross-section is given by
(Jost, Luttinger & Slotnick 1950):

3 / d.
a(w)=4—o:aT :nz [2 flnFl(x);x—Fl(l/n)]+[—(109+64n2)E(e)+(42
1

+125 n2+6174)F(e)]/27} ®)
where
n=2/w, e=(1-n)"

/2
E(e)= f (1 —€e*sin?¢)2d ¢,
0

m[2
F(e) = f (1 —€*sin*¢) V2d¢,

0
PX
Fie) = [T FIa- 1)) age
1
We note that the cross-section in Jauch & Rohrlich appears to be incorrect. We have
obtained the following fits:

6
0((.0) € 2 4 6 8
= af3_2‘ (1+0.875€*+0.755 €* +0.661 €°® + 0.589 €?) for2<w<?24, (9a)

oT
~ (7.6260 — 8.0218 w +2.5250 w? — 0.2047 w*)x 10™*  for24<w<4.0, (9b)

Ta
2-6—; (In 2w — 109/42) + (473.65 +241.26 In 2w

—81.151 In* 2w +5.3814 In® 2w) x 1075/ for 4.0 < w. (9¢)

The error in these fits is less than 0.1 per cent.

3.3 PHOTON—ELECTRON

This cross-section has been calculated by Haug (1975a, 1981) who has also provided the
following simple fits:
87 o(w) ) s 4
— — " = [5.6+204 (w—4) —109 (w —4)* — 3.6 (w —4)® + 7.4 (w — 4)*]
3af oT
x 1073 (w — 4)? d<w<46 (10)
=~ 0.582814 — 0.29842 w +0.04354 w? — 0.0012977 w® 4.6<w<6.0,

3.1247 —1.3397 w +0.14612 ?

6<w<18,
1+0.4648 w +0.016683 w?
~(841In2w —218)/27 +(~1.333In32 w +3.863 In? 2w
—11In2w +279)/w 14 < w.
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These fits can be used to find the thermally averaged cross-section with an error of less than
1 per cent with four-point Gauss—Laguerre quadrature.
4 Electron—positron annihilation

Svensson (1982b) has given the spectral emissivity from annihilating Maxwellian electrons
and positrons in the form of a single integral over the pair production cross-section:

aN 2exp (—w/0
—— =N,N_otc p4(]_) I (w0) an
dvdtdw 6K3(1/6)
where

o0

I(w0)= f 2—3% [(25% +2s — 1) cosh ™ \/s —+/s4/s — 1 (s +1)] exp (— s/w8) ds. (12)

1
He has fitted the integral 7 () by

3v/m

e ¢¥2exp (~1/5) Cy(§); <4 (132)
1(§)= 3t

E(ln 4§ —1—7vg) G(5); 4<¢ (13b)
where the polynomials C;, C, are given by his equations (17) and (18). The maximum error

is 0.3 per cent. Zdziarski (1980) has also fitted a function to the spectrum (11), which is
accurate to 25 per cent for 0.02< 0 < 8.

5 Coulomb heating

Stepney (1983) has derived a general expression for the rate of transfer of energy between
populations with Maxwellian distributions in terms of an integral over the scattering cross-
section. In the case of hot protons heating cooler electrons the Rutherford cross-section is
the relevant one:

3 dQet 3 ( 27me) aQ
= 1+
32y Bt sint oo 327y 6°

do(y,0)= (a4

.4
my, /sin"a
where « is the scattering half angle in the centre of momentum frame and § is the relative
velocity.

This gives a heating rate of

dE 3m kT, — kT
G eNeNpaTcx ( ° p)‘ n
dt 2my Kz(l/ee)Kz(l/op)
200, +0,)*+1 0o +0 6. +0
PO o i)
99+0p Geep 966})

where 0 = kTe/mec?, 0, = kTp/myc® and In A ~ 20 is essentially a Coulomb logarithm. -

6 Discussion

The lack of and poor quality of observations of astrophysical sources above a few hundred
keV makes detailed modelling impractical. The thermal assumption minimizes the number of
free parameters and so leads to the simplest models.
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All the thermally averaged cross-sections relevant at electron temperatures ~ 100 keV—
1 MeV have been considered here, with the exception of particle—particle pair production
and electron—positron bremsstrahlung.

Budnev et al. (1975) give the cross-section for pair production in particle—particle colli-
sions for electrons with energies 2 50 MeV. As far as the authors are aware the cross-sections
nearer threshold are unknown. For plasmas with temperatures less than a few MeV photon—
photon pair production will dominate due to the much lower threshold energy for this
process, even when the plasma is very optically thin to Thomson scattering. These rates will
therefore only be important in the limit of zero optical depth.

The lack of the electron—positron bremsstrahlung spectrum is more serious. In the ultra-
relativistic limit it is simply twice the electron—electron spectrum. In the non-relativistic case
it is more closely related to the electron—proton spectrum, since both systems radiate via
dipole emission. In the case of hard photons (those with energies 2 0.5 MeV) one of the
electrons must be relativistic, and so Svensson (1982a) argues that the high energy tail of the
spectrum will be the same as that of the electron—proton spectrum. The authors know of no
results for electron temperatures 0~ 1.
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Appendix 1: electron—electron bremsstrahlung

The notation used in this appendix is identical to that used by Haug (1975a,b) if no other
definition is given. The spectral emissivity is given by equation (2.4) in Haug (1975b):

2
eC

T K, (1)

(note that here 7 = kT/mec?, k = hv/mec? and Pe, = AN/dV dt d w).
From Haug (1975a) we find:

do_3a JdQ k [p2_4]1/21 fAdSZ A2)
_=‘—-0 _ J— .
dk 81 | Koplw?—4al = P (

do
Peo (K, 7) Jdel exp (— €,/1) |des exp (— €,/7) fdu(uz— 1Y 2&; (A1)
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Choosirig coordinates so that the z-axis is parallel to P; + P, (the sum of the initial electron
three-momenta) and with

e te;—(k+2)
s= ;

; I=€1—€ (A3)
r
we find:
3w kexp (- k/7 il T Ky
P..(k, T)=—fN§oTc P K/m) f ds exp (—s) f dt f du
16w T[2exp (1/K,(A/D)* Jo T u,
y J‘emax sin 8 d6 ™
dg 2 A4
s B, 9
where
(p2_4)1/2
T=—— fAde. (A5)

(see equation Al in Haug 1975a).
The boundary values are found from the condition p?> 4 which gives:

T=€e—-2 if s;<s

My __1 1/2
T= [ (€ — 2(uy + 1)}] if s<s; (A6)
Mg t+1

M1 = Emins M2 = Mmax if k< F(”mins e)
My = Mg M2 = Mmax if F (Mmin, €) <k < F (Umax; €)

Mi=py;  Mp=l+k[(e—k)+{(e—k)*—4}"*] if F(Mmax-€)<Kk (A7)
€e—(u—-1/k

c0s O max = Max [ (u ) -1 ], (A8)
(€ -2 (u+D)”

where

e=e tey M=1+k[(e—k)— {(e— k) —4}"];

_k k- [K*+4K]V2+3 _ .

Sl—;{ 2[k2+4k]1/2+3 };“min—ele2—P1P2, “max=€1€2+P1P2 (A9)

and
u—=1

Fue)=

e —[e¥—2(u+ D]

In order to evaluate (A4) efficiently, Gaussian quadrature should be used. This is impossible
as the integral stands, however, due to the sharp peaks in the integrand for x; or x, small
(this reflects the beaming of radiation in the direction of the electrons’ motion). This
problem can be overcome by making the following transformations:

0 —&

sinhn =€, Q tan ( ) and sinh £ =sinh A tan ¢/2 (A10)
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to give
3 exp (—k/7 b T [
Peo(k, 7) = — 2oy P [T asew ) [ aro [ an
2m? k7[2 exp (1/7)K,(1/1)]? Jo o "
A, [1+ (sinh®n)/e? Q]2 sin 6 A [1+sinh®g/sinh?A] |
X f dn d x?
A, cosh®n[2(u+1—e)]V2(C+D)/? Jo cosh3§
(A1)
where
Q=1+(1-1/e})"? sinh A, =€, Q tan (£,/2); (A12)

. 0 _ 1—(1— 1/62)1/2 cos (0 + 21) 172

2 1—(1—1/e})"?cos (0 — £
C+D=1—(1-1/€?)"*cos (0 +£,)

and

tan§; = 2(u—1)[e* =2 (u+1)] — 2(u +1)2}V?/{e* — 2 (u +1) +et}.

All five integrals in equation (A11) can be simply evaluated using Gaussian quadrature. Great
care must be taken in evaluating X, however, due to rounding error problems (even with 14
significant figures). In particular the terms

L, p? -2 , 20L, w?+p?-4
= + 2__4 2 d W2—2 2 Al3
W, 8xx, (w+p"=4)" an ww? —4)"2x,  4xx, ( ) (AL3)

very nearly cancel and can be very large. This cancellation should be removed analytically.

Appendix 2: photon—photon rates for non-isotropic distribution functions

For a general photon distribution, dNV (k) = Nyn(k)w?dwdudg, the reaction rate is given by

N2¢ .
R77=77 fo(w) (1 —wyny (k) n, (k,) w%dw1d#1d¢1 w%dwzdﬂzd% (B1)

where o(w)is the cross-section in terms of w, the centre of momentum energy, and u = cos §
is the cosine of the angle between the photon directions. Changing variables from ¢, to
¢ = ¢, — ¢, we have (by geometry)

i —cos 04 cos 0, dé = —du B2)

v > - . . . .
sin 04 sin 0, sin 6, sin 8, sin 0

cos ¢ =

The limits of the u integration are given by |cos¢| <1, hence

CcOos (01'1'62)< M < COS (91—02). (B3)
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If the distribution functions are independent of polar angles ¢, and ¢, then the ¢, integra-
tion is trivial, and

u=cos(0,—0,)
77"N70" J:[ 0(‘0)(1—N)nl(wl,ﬂl)nz(wz,U2)
=cos (0,+6,)

. du
X w}dw; dity widwyduy ——————. (B4)
sin 6, sin 8, sin ¢

‘Now change variables from u to w, using 2 w? = w; w, (1 — ). The integration limits become
wi=wiw,[1—cos(8;260,)]/2. Then sinf,sinf,sind=2 [(w} — w?) (W? — W]V /w, w,
and so

Ryy= N%«C47f Jnx (Wi, u1) g (Wa, Mp) W1 Wrdw dw,dpy di,

Wi 3
y f w’o(w)dw (B5)

w_ [(@i— ) (@ -V

The major contribution to the w integral comes from the limits, which behave like
1/1w — w4 |Y2. This contribution can be subtracted otf analytically, and the remaining small
portion can then be evaluated numerically.
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