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ABSTRACT

The physical properties of a thermal plasma of size R in the temperature range 6 (=kT/mc?,
where m is the electron mass) = 4-100 are studied assuming pair equilibrium and thermal balance.
The radiation field is obtained by multiplying the spectral emissivities by the photon escape time.
The effect of scatterings is approximately allowed for by treating them as coherent. All important
pair and photon producing processes in a plasma with a Thomson scattering optical depth 74 of
order unity or less are included. The spectral emissivities and the cooling rates for bremsstrahlung
and pair annihilation are discussed. The photon-photon, photon-particle, and particle-particle pair
production rates, and the pair annihilation rate as well as the opacities are calculated. Simple
approximate expressions are given for several rates.

The equilibrium ratio z of the pair density n, to the proton density N is given by the roots to
the pair equilibrium equation (a polynomial in z). For a given 7y = Nr,?R < 1071, there exists a
temperature 6, beyond which the pair annihilation rate cannot balance the pair production rate
and there are no pair equilibria. For 6 < 6, there are a high-z pair equilibrium branch (z > 1)
with 7, of order unity, where photon-photon pair production dominates, and an optically thin
low-z pair equilibrium branch (z < ty~!), where particle-particle pair production dominates. The
temperature 6, has a maximum value 0,,,, 25 for 7y < 10™* and decreases monotonically for
larger ty. Several aspects of the obtained pair equilibria, such as parameter space dependence,
cooling rates, optical depths, stability, and confinement are briefly discussed.

Optically thick (z; > 1) pair equilibria are considered qualitatively. The approach of the solution
curves in the z-0 plane to complete thermodynamic equilibrium is expected to occur at a
temperature O, ~ t5-3- The physical significance of 8,,;, and 8,,,, is discussed.

A pair equilibrium plasma is kept at O, (for t7 > 1) or at O, (for 7 < 1073) over a wide
range of heating rates. It is, however, emphasized that realistic semirelativistic plasmas may be
neither in pair equilibrium nor in thermal balance.

Subject headings: gamma rays: general — opacities — plasmas — radiation mechanisms —

relativity

I. INTRODUCTION

The physical processes, the heating and cooling
mechanisms, the thermal equilibria, and the ionization
equilibria occurring in tenuous astrophysical plasmas at
temperatures 0 = kT/mc* <1072 (where k is the
Boltzmann constant, m the electron mass, and c the speed
of light) are reasonably well understood. However,

" observations of gamma-ray emission from a wide variety

of objects, such as gamma-ray bursts (most likely
originating from neutron stars; Mazets et al. 1981), the
Seyfert galaxy NGC 4151 (Baity et al. 1981), and the
quasar 3C 273 (Bignami et al. 1981), indicate that
astrophysical plasmas may achieve semirelativistic or
relativistic temperatures. At semirelativistic temperatures
a number of threshold processes appear, associated
with creation of electron-positron pairs. The pairs are
produced through photon-photon, photon-particle, and
particle-particle interactions. The created pairs either
annihilate into photons or participate in other photon
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and pair producing processes. In a steady state situation
at a given temperature (i.e., assuming thermal balance),
the radiation field and the pair density must be
determined simultaneously by solving a nonlinear
radiative transfer equation (with the nonlinearity intro-
duced through photon-photon absorption) and a pair
equilibrium equation (balancing the pair production and
pair annihilation rates).

Very little is known about the equilibrium properties
of a semirelativistic or relativistic plasma. Bisnovatyi-
Kogan, Zel’'dovich, and Sunyaev (1971, hereafter BK)
considered a relativistic (6 > 1) plasma in the limit where
the photon density is so small that only pair production
by particle-particle collisions is important. The equilib-
rium pair density was found to increase with tempera-
tures until § = 40, where the equilibrium pair density
approaches infinity. At higher temperatures no pair
equilibrium is possible. BK also derived an approximate
expression for the pair density at nonrelativistic
temperatures (6 < 1). Stoeger (1977) treated the case
where photon-photon pair production is important. The
equilibrium pair density in the temperature range
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% < 0 < 1 was found to be much smaller than the proton
density of the medium. In fact, the obtained pair densities
are much smaller than an interpolation of BK’s results
between low and high temperatures. This is inconsistent
since BK’s solution describes the minimum equilibrium
pair density. Inclusion of photon processes should raise
the pair density at a given temperature. Also, a closer
study of Stoeger’s pair equilibrium equation reveals a
second solution (not explored by Stoeger), where the
equilibrium pair density is larger than the background
proton density.

We extend the above work by including most of the
important processes influencing the equilibrium
properties of a plasma in the temperature range
$<0<100. It is assumed that Comptonization and
absorption processes have little or negligible effect on the
radiation field. The included processes are treated as
exactly as possible, i.e., the exact cross sections are used
when available, and the rates are calculated, taking into
account all relativistic kinematic effects.

In § II the model is presented and the validity of
the adopted assumptions is discussed. The radiation
processes are treated in § III, and the corresponding
cooling rates in § IV. Pair production rates, annihilation
rates, and opacity coefficients are calculated in § V.
The properties of the solutions to the pair equilibrium
equation are discussed and compared to other work in
§ VI. Section VII treats qualitative aspects of a plasma
with a Thomson scattering optical depth larger than
unity. Section VIII contains a discussion of some general
implications of the obtained results as well as a summary
of possible pair equilibria.

Finally, it should be emphasized that it is not the
intention of this work to model realistic, semirelativistic
plasmas, but rather to explore the properties of semi-
relativistic plasmas using certain simplifying assump-
tions. The results of this paper will form a point of
departure for forthcoming work, where some of these
assumptions are relaxed.

II. THE MODEL

Consider a stationary, uniform, neutral plasma of size
R consisting of protons (p), electrons (e~ ), positrons (e™)
and photons (y) with densities N, n_, n,, and n(x)dx,
respectively. The quantity n(x)dx represents the density
of photons with energy x (expressed in units of mc?) in
the energy interval dx. The charge neutrality condition
reads

n_=N+n,. 1))

All quantum electrodynamical processes to order o> in
the coupling constant (the fine-structure constant)
occurring in such a plasma are listed in Table 1. Also
listed are the lowest order («*) particle-particle pair
production processes, important only when the photon
density is small.

The Lorentz factors y of the electrons and positrons
are assumed to have a relativistic Maxwell-Boltzmann
distribution,

f()dy = [0K,(1/0)]™ ' By* exp (—y/0) (2)
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TABLE 1
PHYSICAL PROCESSES IN RELATIVISTIC PLASMAS

Basic Two Body Radiative Pair Producing
Interaction Variant Variant
Mgller and Bhaba
scattering Bremsstrahlung
ee — ee ee <> eey ee —eeete”
Compton scattering Double Compton scattering
ye — ye ye < yey ye—eete”
Pair annihilation Three quantum annihilation
ete” -y ete” oy
Photon-photon
pair production Radiative pair production
woete weetey
Processes Involving Protons
Coulomb scattering  Bremsstrahlung
ep —ep ep <> epy ep—epete”
yperpe’e”

characterized by the dimensionless temperature param-
eter

0 = kT/mc* . (3)

K, (x) is the modified Bessel function of second kind of
order n, and B = (y* — 1)"?/y. Gould (19815, 1982) did
a detailed investigation of the relaxation time scales
in a relativistic plasma and found that Mgller (e*e*)
and Bhaba (efe”) scatterings cannot maintain a
Maxwellian electron and positron distribution for
0 > 3.5. At higher temperatures bremsstrahlung losses
dominate the relaxation processes, and deviations in the
Maxwellian tail occur. In the temperature range where
we find equilibrium solutions (0 < 25), the deviations
are not appreciable and our results are still applicable,
as long as 6 represents the mean energy of the particles.

For temperatures considered here, the protons have
a nonrelativistic Maxwell-Boltzmann distribution and
can be viewed as being at rest.

All pair producing and photon producing processes
listed in Table 1 are included in the model, except
double Compton scattering, radiative pair production,
three quantum annihilation, and any applicable three
or four body process. Some excluded processes as well
as absorption processes are of marginal importance for
certain equilibrium solutions. For these solutions the
Thomson scattering optical depth of the medium,

8n
tr=(ny +n_) 5 r’R, )
is of order unity (r, is the classical electron radius).
Ifthe optical thickness to absorption processes is small
at photon energies of interest, then the photon density
at energy x in the medium can be written as

n(x) X 1(x)tesc(X) ©)
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where 7A(x)dx ergs cm™3 s™! is the production rate of
photons of energy x in the energy interval dx, and t,,,
is the photon escape time of the medium. As 7 is of
order unity in some cases, Comptonization and spatial
diffusion should be taken into account. Comptonization
is neglected, but its influence on the solutions is shown
to be not very large. As it turns out that spatial diffusion
becomes important only at temperatures 6 < 6, it is
treated in the Thomson limit by simply taking into
account the prolonged pathway due to scatterings during
photon escape (see, e.g., Rybicki and Lightman 1979),

R

Lese ¥ ? (1 + TT) . (6)
The sensitivity of the results to spatial diffusion is tested
by excluding the enhancement factor (1 + 7).

The radiation field is treated both as homogeneous and
isotropic (cf. eq. [5]). This is a gross approximation of
the true situation, where the radiation field is non-
isotropic and inhomogeneous and extends beyond the
plasma region of interest, producing a halo of pairs. The
inhomogeneous problem as well as the inclusion of
neglected but marginally important processes are
deferred to future studies.

Two useful dimensionless quantities are introduced.
The pair density is expressed in units of the proton
density,

4

z|

; (7)

and the size, R, and the proton density, N, are combined
to form the parameter

=y = Nr,’R. (8)
Equation (4) can be rewritten in terms of z and ty, using
equation (1), as
8n

=3 w(l +22). 9)

III. THE RADIATION FIELD

The photon generating processes treated here are pair
annihilation and bremsstrahlung. In a plasma consisting
of electrons, positrons, and protons there are four

different types of bremsstrahlung, namely, e”p, e*p, -

e*e*, and e*e”. In the Born approximation the e”p
and e*p cases are identical (e.g, Jauch and Rohrlich
1976) and only three cases need to be considered. The
total radiation field, n(x) cm™3, can be written as

n(x) = nA(x) + nep(x) + nee(x) +ny —(X) > (10)

where n4(x), n,,(x), n..(x), and n, _(x) are the photon
densities at energy x due to pair annihilation and
bremsstrahlung from ep, e*e*, and e*e™ interactions,
respectively. Using equations (1) and (5)-(8) and the
dependence on density of the emissivities, equation (10)
is rewritten as

n(x) = Nty(1 + 17)[(z + 2%)S4 + (1 + 22)S,,
+ (1 +2z+22%)S,.+ (z+2%)S,-], (11)
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which defines the spectral shape functions S;(x, 6) (where
i symbolizes one of the four radiation mechanisms).

In this section analytical expressions for Si(x, 6) are
found. Maxon (1972) employed an interpolation pro-
cedure to determine the bremsstrahlung spectra at semi-
relativistic ~ temperatures, knowing the spectra
analytically at nonrelativistic and extreme relativistic
temperatures. Here, instead, simple correction functions
are applied to the analytical expressions.

a) The Pair Annihilation Spectrum

The pair annihilation process in a thermal plasma and
its resulting spectrum have been discussed by Zdziarski
(1980), Ramaty and Mészaros (1981), and Svensson
(1982).

At nonrelativistic temperatures, the slightly Doppler-
broadened annihilation spectrum peaks at photon energy
x = 1. Atsemirelativistic temperatures, the kinetic energy
of the annihilating particles becomes important and the
spectral peak moves to higher energies and is broadened.
As no simple analytical expression for the spectrum
exists in this regime, the numerical fit that Zdziarski
(1980) made to his Monte Carlo calculations is used
for 6 < 4. At temperatures 0 > 4 the simple expression

-
204
obtained by Svensson (1982), is used. The constant # is
defined as n = exp (—yz) = 0.5616, where y; = 0.5772 is
Euler’s constant.

The cooling rate obtained by integrating the chosen

spectrum over n, n_ cr,’mc>xdx deviates from the exact
pair annihilation cooling rate (see § IV) by at most 10%.

Sa(x, 6) (In 4n0x — 1)x exp (—x/60), (12)

b) ep Bremsstrahlung

The spectrum S,,(x, 0) of photons emitted by thermal
electrons and positrons decelerating in the fields of
protons is obtained by averaging the Bethe-Heitler cross
section do/dx (Jauch and Rohrlich 1976) over the
Maxwell-Boltzmann distribution f(y)dy (eq. [2]) of the
electrons and positrons,

@ do
Sl 0) = [~ ar O ). 03)
1+x X
Equation (13) has been integrated analytically in the
relativistic limit, x > 1 and 6 > 1, by Quigg (1968) and
in the nonrelativistic limit, x < 1 and 6 < 1, by Frank-
Kamenetskii (1962). These asymptotic results are grossly

in error at 6 = 1.

For 0 >1, we replace the logarithmic factor
In [2y(y — x)/x] in the relativistic limit of the Bethe-
Heitler cross section with 2 In [2(y — 1)(y — x)/x]. For
a given photon energy x, the resulting cross section
better approximates the exact cross section near the
threshold y, = 1 + x then does the relativistic expression.
Furthermore, equation (13) can be integrated analytic-
ally, and the resulting, rather complex expression agrees
with a numerical determination of the exact spectrum to
within 6 9 at @ = 1, while becoming increasingly accurate
at higher temperatures.
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For # <1 it is convenient to use the result of
Gluckstern, Hull, and Breit as quoted by Kylafis and
Lamb (1982), where higher order terms in 6 and x to the
nonrelativistic dipole spectrum are given. This expression
breaks down for x > 1, the energy range of interest in
pair producing processes. A correction factor is applied,
making the deviations from an exact numerical
integration of equation (13) less than 7%, for < 1 and
x < 102,

¢) e*e* Bremsstrahlung

At relativistic temperatures, 6 > 1, the spectrum
calculated by Alexanian (1968) is used. During
relativistic e*e* collisions both particles can be thought
of as radiating, giving a spectrum about twice as large
as for ep collisions, where only one of the interacting
particles radiates. Furthermore, the relative Lorentz
factor, yg, is of order 2y,y, for e*e* collisions, while
simply being equal to y for ep collisions (y;, y,, and y
are Lorentz factors in the observer’s frame for the
radiating particles). As yg appears in the leading
logarithmic term in the extreme relativistic cross section,
the large relative Lorentz factor in the efe® case
introduces an additional factor of 2 when averaging over
the particle distributions. Finally, a factor of  occurs
as the interacting particles are identical. The efe*
spectrum is therefore expected to be approximately
2 x 2 x4 times as large as the ep spectrum in the
extreme relativistic limit. In fact, this is seen explicitly
by comparing the cooling functions for the two cases
(see § IV).

At nonrelativistic temperatures, 6 < 1, and for photon
energies, x < 1, the quadrupole spectrum calculated by
Gould (1980, 1981a) is used. A correction factor, 1 + 0,
is applied to bring Gould’s spectrum into approximate
agreement (to within 30 %) with the relativistic spectrum
at f=1. For x> 1 the radiating particle must be
relativistic, while the other particle typically is non-
relativistic. If so, the high energy (x > 1) part of the
e*e® spectrum per pair of particles should be
approximately equal to the corresponding ep spectrum
at nonrelativistic temperatures, while becoming 4 times
larger at relativistic temperatures, as discussed above.
Taking into account the identity of the particles, the ep
spectrum multiplied with a correction factor (1 + 36)/2
is used to describe the efe® spectrum for § <1 and
x > 1. The resulting spectrum agrees to within 25 9, with
the relativistic spectrum at 6 = 1.

The cooling rate calculated using the chosen spectrum
deviates by less than 6 9 from the cooling rate in § IV
in the semirelativistic regime, while becoming very
accurate at < 1 and 6 > 1.

d) e*e” Bremsstrahlung

At relativistic temperatures, 6 > 1, the result by
Alexanian (1968) is used. The e*e™ cross section he
employs is essentially identical to the e*e™ cross section
except in the high-frequency limit, y — x < 1 (Baler,
Fadin, and Kroze 1968). This difference becomes
negligible when the cross section is averaged over the
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particle distributions. The relativistic e*e™ spectrum is
about 4 times larger than the relativistic ep spectrum
(cf. § IIIc).

At nonrelativistic velocities the process, as viewed in
the center-of-momentum (CM) frame, can be reduced to
the equivalent one-body problem (ie., the ep case),
where a particle with reduced mass m/2 moving at
relative velocity 2fcy radiates in the field of an
infinitely heavy particle. In fact, the cross section in the
CM frame is just the nonrelativistic limit of the Bethe-
Heitler cross section (Joseph and Rohrlich 1958). After
averaging the cross section over a relative non-
relativistic Maxwell-Boltzmann distribution, the e*e”
spectrum for 6 < 1 and x < 1 is found to be 232 larger
than the ep spectrum. This result is most easily obtained
by replacing the mass m in the expression for the ep
spectrum with the reduced mass m/2. The e e~ spectrum
at 6 <1 and x> 1 is equal to the corresponding ep
spectrum. To describe the e*e™ spectrum for # <1, a
simple correction function of  and x, having the limits
stated above, is applied to the ep spectrum, so that the
difference at # =1 as compared with the relativistic
spectrum is less than 30 9.

IV. COOLING RATES

The cooling rate, A, ergs cm ™3 s~ !, for thermal pair

annihilation was given as a single integral by
Zdziarski (1980). The nonrelativistic cooling rate,

Ag=nyn_crme2n (k®<6<1), (14)

can be combined with the relativistic cooling rate
obtained by Svensson (1982),

Ag=n,n_cr*mc? %E mn2n6+%) (O>1), (15

to form the expression
2n
/(1 4 66) + 6/[In (270 + 1) + %]
0>a?), (16)

which agrees to within 2 9; with a numerical evaluation
of Zdziarski’s integral.

Stickforth (1961) gave the cooling rate, A, for
thermal ep bremsstrahlung both as a single integral and
as an approximate but rather complicated expression.
By applying instead simple correction factors to the
nonrelativistic cooling rate (e.g., Stickforth 1961) and the
relativistic cooling rate (Stickforth 1961), the following
expressions,

Ay =n,n_cr.’mc? I

12

A, = (ny + n_)Ner,*mc*a 33—2(§) (1 + 1.7816*3%)
@<0<1) (17)

and

A,, = (ny + n_)Ner,mc*a120[In (270 + 0.42) + 3]

©=1), (18)
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were found to deviate by less than 2%, from the exact
cooling rate.

Haug (1975b) wrote the thermal e*e* bremsstrahlung
rate, A,,, as a double integral over an approximate (to
within 6 %) integrand. Applying a correction factor to the
nonrelativistic quadrupole rate (Stickforth 1961),

A= (ny* + n_%)er*mca % (44 — 3n%)032

x (1+ 110 + 62 — 1250>%) (k2 <6<1),
(19)

and using the relativistic cooling rate (Alexanian 1968),
A= (ny? + n_?)er,*mc*0240(In 270 +3) (6=1),
(20)
it is found that the deviations from a numerical
evaluation of Haug’s double integral is less than 2%,
The cooling rate, A, _, for thermal e*e~ bremsstrah-
lung has not yet been treated in the literature. From
the arguments made in § IIId, the nonrelativistic e*e”
cooling rate is expected to be larger than the non-
relativistic ep cooling rate by a factor of 232, In the
relativistic limit, Alexanian’s (1968) e*e® result is
expected to be valid (after multiplying by a factor of 2,

as the particles are nonidentical). The following
expressions,

112
A, _ =n,.n_cr. mca23? §3z(2—7f) (14 1.76*5)

@ <0<1) (1)
and
Ai_=n,n_crl’mc*ad80(In2n0 +3) (6=1), (22)

agree to within 49 with the cooling rate obtained by
numerically integrating the spectrum chosen in § I11d.

The four cooling rates are shown in Figure 1. It is
concluded that in an optically thin plasma the total
bremsstrahlung cooling always dominates the annihila-
tion cooling for temperatures 6 > 3.5, independent of the
number of pairs present. In plasmas that are at least
marginally optically thick to Thomson scattering,
Comptonization will amplify the bremsstrahlung
cooling, extending its dominance in pair plasmas to
even lower temperatures.

V. CROSS SECTIONS, RATES, AND OPACITIES

The discussion of each process is initiated with a brief
description of the cross section (for which the Born
approximation is assumed) and its behavior. Coulomb
corrections, important near thresholds, are neglected.

a) Photon-Photon Pair Production (yy —e*e™)

The cross section for photon-photon pair production
can be found in-Jauch and Rohrlich (1976). Expressed
in terms of the photon energy xcy in the CM frame, the
threshold behavior is

O'(XCM) = rezﬂ:(xCMz —_ 1)1/2 (xCM — 1 < 1) N (23)
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-18 T T T

log A/n,n,[erg cm®$']
]
)

|
n
N

-23

-24 I 1 1
- - 0 i
2 log 8 2

F1G. 1.—The total power emitted per unit volume, A (the cooling
rate), as a function of 6. A denotes the cooling rate due to pair
annihilations, while + —, ep, and ee denote the cooling rates due to
bremsstrahlung from e*e™, ep, and e*e* collisions, respectively. In
the four cases myn, represent n,n_, n,n_, (n, +n_)N, and
ny? + n_?, respectively.

while the decrease at large photon energies is described
by
a(xcm) = 1.° xn 5(2In2xcy —1) (xew>1). (24)

CM

The cross section has a maximum at xgy ~ 1.40.

The absorption coefficient for photon-photon pair
production, a,,(x, ) cm™!, for a photon of energy x
traversing an isotropic radiation field, was obtained by
Gould and Schreder (1966; see Brown, Mikaelian, and
Gould 1973 for corrections):

e 6) = i | dynly,O))00) . @5)

where ¢(s, = xy) essentially is the cross section averaged
over the photon-photon interaction angle.

The optical depth of a uniform region of size R is
simply 7,,(x, 8) = a,,(x, O)R. Defining the opacity func-
tion

0,(S) =7 [ dySiy, 0)(xy) 2¢(xy),  (26)

1/x

the contribution to 7,,(x, 6) from the annihilation
radiation field is, using equations (8) and (11),

Tyy(%, 0)a = 52 (1 + 1)z + 2%)0,,(S4) . (27)
0,,(54) (dashed curves) and 0,,(S,,) (solid curves) are
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log x

F1G. 2.—The dimensionless opacity function O,,(S;) as a function of
photon energy x at different temperatures 6. The dashed curves
represent the opacity function due to annihilation radiation, 0,,(S,),
while the solid curves represent the opacity function due to ep-
bremsstrahlung, O,,(S,,). Each curve is labeled by its value of 6.

shown in Figure 2 as a function of temperature and
photon energy.

The photon photon pair production rate, (7 ),, cm ™3
s~ 1, is given by

o

(i) = de [ dwn(x, 0)ay,(x, 0), (28)

where the factor of 1 avoids double counting the inter-
acting photon pairs. Defining the temperature-dependent
rate function,

P,(S.S;) = % j:dxsi(x, 0)0,,[S,(x, 0)],  (29)

and using equations (11), (25), (26), and (28), the con-
tribution to photon-photon pair production from the
annihilation radiation field is

Zy (4, na) = t.” ey (1 + 10)%(z + 2%)° P, (S5 S4)
(30)

where z = n, /N is the production rate in terms of the

proton density, and where t,”! = cr,2N. There are nine

other rate functions for various combinations of the

four radiation fields. In Figure 3 P,.(S4, S4) (curve f),

P,(Seps Scp) (curve b), P,(S._, S,_) (curve a), and

4 S +_) (curve e) are shown as functions of
temperature.

b) Photon-Electron (or Positron) Pair Production
(ye > ee*e™)
The threshold behavior for the cross section as a
function of the photon energy x as measured in the rest
frame of the particle is (Vortruba 1948)

o) =2 0 ap (—a<1). ()
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while the slow increase at large energies is described by
(Borsellino 19474, b)

o(x) =rl e n2x — 38) (x> 1). (32)

The differential cross section was calculated exactly by
Haug (1975a). The total cross section was then obtained
by numerically integrating the differential cross section
twice. Haug found that an earlier approximate result
by Ghizzetti (1947) and Borsellino (19474, b) is correct
to within 129, for x > 15. For 4 < x < 15 we made a
numerical fit to Haug’s tabulated values of the cross
section.

Using Weaver’s (1976) results on relativistic reaction
rates, the pair production rate is given by

(fiy )ye = c(ny + n_)[2K,(1/0)]71
x dexn(x, 0)x~2 jwdyya(y)
x exp [—(x/y + y/x)/20] . (33)

In a manner similar to equation (28), this rate can also
be written as

(ide=c[ dus, O 0). (4

and from comparing with equation (33) an expression
for the absorption coefficient, a,.(x, ) cm™%, is easily

O O O T Q

‘8 1 1 \\I

0 " log 6 2

F1G. 3.—The dimensionless palr production rate functions, (a)
Py(Ss-, S+2) (B) Ppy(Seps (c) PYe(Szp @ )'p(szp) (e)
P,(S4, S+-), and (f) P,,(S4, SAS as a function of temperature 6.
The dashed part of curve (f) is uncertain as the low energy part of the
annihilation spectrum is only approximately known at relativistic
temperatures.
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U L Vi / I 1
3—2 -1 [0} | 2 3
log x

F1G. 4.—The dimensionless scattering function, O(x, 6) is shown by
the solid curves as a function of photon energy x at different
temperatures 6. Each curve is labeled by its value of 6. The dashed-
dotted curves represent the opacity function O,,(x, 8), while the dashed
curve is the opacity function O,,(x). The 6 = O-curves as well as the
O“,-c;lrve are just the cross sections for the respective process divided
by r.*.

obtained. Defining the opacity function O,,(x, ) through

ae(x, 0) = (ny + n_)r,20,.(x, 0) (35)

and using equations (1) and (7), the optical depth is
given by

(%, 0) = dye(x, O)R = 15(1 +22)0,.(x, 0) . (36)

0,.(x, 0) is shown in Figure 4 as dashed-dotted curves
for different temperatures. It is straightforward to obtain
limiting expressions for O,,(x, ). Using equation (32) at
relativistic temperatures gives

0,.(x,0)=a*&(Indnbx — ) (x>0 A 0> 1), (37)

while for nonrelativistic temperatures, O,,(x,8)=
a(x)/r.>.
Defining the dimensionless rate function,

Po(S)= | :dei(x, 0)0,(x, 6) , (38)

and using equations (1), (7), (11), and (33), the pair
production rate from the ep bremsstrahlung radiation
field is

Zye(Mep) = 1. "1 + Tr)(1 + 22)*Po(S,y) - (39)

Similar expressions are obtained for the other three
radiation fields. Figure 3 shows P,,(S,,) (curve c).

¢) Photon-Proton Pair Production (yp — pe*e™)

Racah (1934) obtained the exact cross section as a
function of photon energy x. Near threshold the cross
section behaves as

o) =rla (—2 (x-2<1),  (40)
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while the slow increase at large energy is given by
o(x)=r a3 In2x —38) (x>1). (41)

A useful truncated series expansion of Racah’s com-
plicated expression for the cross section with a relative
error less than 5 x 10~ 3 was found by Maximon (1968).
As the protons are nonrelativistic at temperatures of
interest, the absorption coefficient is simply a,,(x) =
Na(x). The optical depth becomes, using equation (8),

T,p(X) = a,p(X)R = Ty o(x)r.2 =5 0,,(x), (42)

which defines O,,(x). 0,,(x) is shown in Figure 4 by the
dashed curve.

The photon-proton pair production rate, (7. ),, cm
s~ 1, is given by

-3

a0

i)y =c | dunlx, O)ayy(x). (43)
Defining the dimensionless rate function,
P,(S) = [ xS 0)0,,(x.6) (44)

and using equation (11), the pair production rate from
the ep bremsstrahlung radiation field becomes

Zyplnep) =t~ 'ta(l + Tr)(1 + 22)Pyp(Se;) - (45)

The three other radiation fields give similar expressions.
P,,(S.,) is shown in Figure 3 (curve d).

d) Particle-Particle Pair Production
(ee > eeete™, ep > epete”)

The cross sections have so far only been treated in
the extreme relativistic limit (see Budnev et al. 1975 for
references; Kuraev and Lipatov 1975). The general
result is

a(y) = r2a? % (In®2y — ¢; In* 2y + ¢y In 2y + ¢o)

(r>1), (46)

where 7y is the Lorentz factor in the rest frame of one
particle (in the ep case always the proton) and where
¢, = 178/28. For the ep case, c¢; ~ 2.6 and ¢, ~ 40, while
in the ee case, ¢, ® —11 and ¢, = 100 (Budnev et al.
1975). All contributions to ¢, have not yet been calculated
(Kuraev and Lipatov 1975), and, furthermore, ¢, and ¢,
differ by a few percent in the ee case, depending on
whether the initial particles are identical or not. These
complications are neglected here as our ignorance is even
greater at lower energies. We simply assume that the
cross sections depend linearly on y between the threshold
7, and some 7., above which equation (46) is used. We
choose 7, = 50 in the ep case and y, = 90 in the ee case;
v, = 3 and 7 for ep and ee collisions, respectively.

The pair production rate, (7. ),, cm™3s71 due to ep
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collisions is obtained by averaging the cross section over
the particle distribution, equation (2), which gives

(1) = (1 + 1 )Ne | “f ()Bo()

= (n4 + n_)Ncr,2P,,(0) , (47)

defining the dimensionless rate function P,,(f). Using
equations (1) and (7), this expression is rewritten as

2oy =t~ (1 + 22)P,,(0) . (48)

At extreme relativistic temperatures P,, becomes
28
P,=do 7m [In® 26 + (3I; — ¢;) In? 260

+ @I, —c,I; +¢;)In20
+3(I3 —caly + ¢4y +2¢0)] (0> 1), (49)
where

1= [ dzexp (~2)z2(n 2y (50)

is evaluated to give I; = 3 — 2yz, I, = 2.493, and I; =
3.450.

Using Weaver’s (1976) results, the pair production rate,
(714)ee cm ™2 571, due to ee collisions is

(1) = s + - [ drF(3)Boy)

= (ny +n_)cr.?P.(0), (51)

which defines the dimensionless rate function P, (6).
F(y) is given by

F(y) = [6K(1/6)]*B7*(2ycm/0) ™ 'K 1(2ycm/0) . (52)

where yem = [(» + 1)/2]*/?. Using equations (1) and (7),
equation (51) is rewritten as

Zoe = tc_1(1 + 2Z)ZPee(o) . (53)

For reasons similar to those given in § Illc, the ee pair
production rate in the very extreme relativistic limit
becomes a factor of § x 23 larger than the ep pair
production rate. The leading term of P,, is

)28
27

P,, and P,, are shown in Figure 5. P, also exceeds
P,, at low temperatures, although the rest frame
threshold is larger for ee collisions. This is because the
effective threshold in the observer’s frame for ee collisions
isapproximately [(y, + 1)/2]'/? = 2, which is smaller than
the threshold for ep collisions.

P,=42=—(2In20)® (6>1). (54)

e) Pair Annihilation (e*e™ — yy)
The cross section is given in Jauch and Rohrlich (1976).
At nonrelativistic velocities the cross section becomes

oy) = rf% @<p<1), (55)
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F1G. 5.—The dimensionless pair production rate functions and the
dimensionless annihilation rate function, 4, as a function of tempera-
ture 6. The curves are dashed where the rate functions are uncertain.

while at relativistic energies the cross section decreases
as

o(v)=rﬁ’—;(ln2y—1) > 1), (56)

where 7y is the Lorentz factor in the rest frame of one
particle.

The pair annihilation rate, (1), cm™
as (cf. egs. [51] and [52])

351 is written

(1)a = e nc [ dF()Bot) = n. n_ 240

(57)
which defines the dimensionless rate function A(6). Using
equations (1) and (7), equation (57) is rewritten as

Za=1t" Yz + 2%)A(0) . (58)

The asymptotic forms of A4, A== for 6 <1 and
A= (n/2)0~%In (2n6) for 6 > 1 (Svensson 1982), are
combined into an expression that deviates by no more
than 2% at all temperatures of interest,

T
1+426%n (270 + 1.3)°

The decline of A at relativistic temperatures, as shown
in Figure 5, is due to the decreasing cross section at
large energies.

A(0) = (59)

f) Three Quantum Annihilation (e*e™ — yyy)

The annihilation rate due to three quantum
annihilations is a factor of 3n/[4a(n? — 9)] ~ 371 smaller
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than the two quantum annihilation rate at nonrelativistic
temperatures (Ore and Powell 1949). At relativistic
temperatures the three quantum annihilation rate is
expected to increase logarithmically with temperature
relative to the two quantum annihilation rate (see Gould
1979 for the corresponding case of double Compton
scattering vs. Compton scattering). If so, three quantum
annihilation can safely be neglected as an annihilation
channel for 0 < 102,

g) Compton Scattering (ye — ye)

The cross section, given in Jauch and Rohrlich (1976),
is constant at low photon energy x (as measured in the
rest frame of the particle),

287
3

while at large photon energy (the Klein-Nishina limit)
it decreases as

a(x)=r, (x<1), (60)

o(x)=r? g (In2x+3) (x>1). (61)
The scattering coefficient, a.(x) cm™?, is given by (cf.
egs. [33] and [34])
acs(x, 0) = (n4 + n_)2K,(1/0)] *x~?

[ dyyoly) exp [~ (sfy + y/x)20) . (62)

Defining the scattering function through
a.(x, 0) = (ny + n_)r,204(x, 0) , (63)

the scattering optical depth becomes, using equations (1)
and (7),

Tes(X, 0) = ag(x, O)R = T5(1 + 22)0,4(x, 0) . (64)

O.(x, 6) is shown in Figure 4 (solid curves) as a
function of photon energy at different temperatures. For
relativistic temperatures the Klein-Nishina decline starts
at x ~ 0~ '. Asymptotic forms for O(x, 0) can easily
be derived. At nonrelativistic temperatures, O(x, 0) =
o(x)/r,?, while in the Thomson limit (x <67!) at
relativistic temperatures, O (x, 6) = 8n/3. Using equa-
tion (61) in equation (62) gives, at relativistic tempera-
tures,

O(x, 0) = 2%( (Indnbx +3) (x>0 A0>1).(65)

The asymptotic opacities given by equations (37) and (65)
have been obtained independently by Gould (1982).
VL. OPTICALLY THIN PAIR EQUILIBRIA
a) The Pair Equilibrium Equation

The pair density equilibrium equation is obtained by
setting the net pair production rate, Z, equal to zero,

t=2p—2,=0. (66)
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Here Z; is the total pair production rate
Zp = 2y, n) + Z,6(n) + 2,5(N) + Zoe + Zop . (67)

z4 is given by equation (58), and the photon density n
is given by equation (11). The rate z, consists of
4x4+4+4+1+1=26terms, 5 of which are given
by equations (30), (39), (45), (48), and (53). Equation
(66) can formally be written as a polynomial equation
in z,

bi(TNa G)Zi =0 s (68)

-

1

where I = 6 or 4, depending on whether spatial diffusion
is taken into account or not. The coefficients b,(ty, 0) are
polynomials in 1y,
J
bi(ty, 0) = .Zodij(o)TNJ > (69)
i=
where J = 4 or 2, depending on whether spatial diffusion
is included or not, and where d;(6) are sums of the
rate functions defined and calculated in § V.

The equilibrium pair density, n,, is a function of the
three parameters: N, R, and 6. As the general solution
of equation (66) can be written as z = z(ty, 0), the pair
density becomes n, = n, (N, R, 0) = Nz(tn, 6). There
are, however, two limiting cases, where the parameter
space of the problem becomes two-dimensional and the
pair equilibrium equation reduces to a second-order
polynomial equation. One case occurs when 1y < 1 and
the solution satisfies z < ty ™. Then the pair density is
independent of the radiation field and thus the plasma
size R (cf. egs. [5] and [6]). The other case occurs when
7y < 1 and the solution satisfies z > 1. Then the pair
density is independent of the background proton
density N.

In Figure 6 the behavior of zp (dashed curve) and
Z,4 (solid curves) are shown schematically for a given

ZQ' ZG /II

log z

log z

F1G. 6.—The dimensionless total pair production rate, zp, is shown
schematically by the dashed curve as a function of the dimensionless
pair density z. The solid curves represent the dimensionless annihilation
rate, z,, at two different temperatures 6. (The arrow points in the
direction of increasing 6.) At higher temperatures the annihilation rate
cannot balance the pair production rate and no equilibrium solutions
exist. Different parts of the curves are labeled by their power-law
dependence on z.
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Ty as a function of z and 6. As Zp increases slowly
(for 6 > 1) and %, decreases rapidly with 6, there exists
a temperature 0,(ty) above which pair annihilation
cannot balance pair production and no equilibrium
solution exists. For 6 < 6 (ty) there are two roots, one
low-z and one high-z, to equation (66).

b) The Low-z Case

For 1y < 1 and z < 1y !, pair production involving
photons is negligible compared to particle-particle pair
production, and equation (66) becomes

(1+22)*P,o+ (14 22)P,, — (z +2*)A =0, (70)
which can be rewritten as
(4P, — A)z* + (4P, + 2P,, — A)z + P, + P,,=0.
(1)

The solution of equation (71) is a function of temperature
only, and the pair density becomes n, =n,(N, ) =
Nz(6). In Figure 7 z(6) is shown as the curve denoted
by tn=0. The solution approaches infinity at the
temperature, 0,,,,, where the coefficient of z?> becomes
zero, i.e., when

4Pee(6max) = A(Bmax) * (72)

For temperatures larger than 0,,,, 25 no equilibrium

-8 1 1

-1 0 | 2

log 6

F1G. 7.—The dimensionless equilibrium pair density z is shown as a
function of temperature 6 by the solid curves. Each curve is labeled
by its value of 7. Spatial diffusion was not included for the dashed-
dotted curve. Above the dashed curve the kinetic energy density of a
plasma in pair equilibrium exceeds the rest mass energy density (eq.
[86]). The dotted curves outline different pair production regimes. In
regions A, AB, and B, pair production is dominated by photon-photon
pair production from annihilation photons, from annihilation photons
interacting with bremsstrahlung photons, and from bremsstrahlung
photons, respectively. In region C, pair production is dominated by
photon-particle collisions, while near the ty = 0 curve particle-particle
collisions predominate.

Vol. 258

solution is possible. Figure 5 shows that P,, and P,, are
much smaller than A4 for 6 < 6,,,. Then the solution of
equation (71) becomes
P P
z=—“-_:1—2<1 (0 < Oynay) - (73)

The uncertainty of this approximate solution is directly
proportional to the uncertainty in P,, and P,, (see
§ Vd).

¢) The High-z Case

For 7y < 1 and z > 1, the pair equilibrium equation
(66) becomes

(1 + 1) L Py + 21p(l + 17) 2 P
+ z?4P,, — 224 =0, (74)
where
Z Py, = P,,(S4, S4) + 4P,,(Sces See)
+ va(S+—> S+-) + 4Pw(SA’ See)
+2P,,(S4, S4-) + 4P, (See, S+ -) . (75)
and
2 Pre=2P,(S4) + 4P,(Se.) + 2P,e(S4-) . (76)

Y P,,and Y P, are shown in Figure 5 and are functions
of temperature only. The Thomson scattering optical
depth from equation (9) for z > 1 is simply

16
Tr= "——ﬂ INZ . (77)
3
Changing the dependent variable in equation (74) from
z to tr gives a second-order polynomial equation in
TT(I + TT),

167
Z Pyysz(l + TT)Z + T Z PveTT(l + TT)

16m)\?
+ (—375) 4P, — A)=0. (18)
The solution of equation (78) is a function of temperature
only. Then z = (3/16n)r1(0)/zy, and z scales as 15~ *, as
Figure 7 shows. The physical pair density becomes,
using equations (8) and (77),

3 14(0)
(0= g

=75 x 102*R™*74(f) cm™?

(ns > N). (79)

scaling as R™! as shown in Figure 8. The solution
approaches zero at 0,,,,,, where the last term in equation
(78) becomes zero (cf. eq. [72]).

In the high-z case, pair production is caused by both
particles and photons. In Figure 7 the dotted curves
show where different pair production mechanisms
dominate (see figure text). For 6 < 10, photon-photon
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F1G. 8.—The physical pair density n, as a function of temperature
6. The high-z solutions (for ty < 1) are shown as solid curves for
log R(cm) equal to 0, 6, and 12. For the last case the complete
solution curves are shown for log 7y equal to —1, —3, and —35: The
dashed curve represents the pair density in thermodynamic equilibrium
(eq. [87]).

pair production dominates. Then the solution of equation
(78) becomes

tr(l+17) =

Tsr) O<om. 60

Figure 5 shows that 4/) P,, ~0.20 and thus 1, ~ 2.3,
approximately independent of temperature for 6 < 2.
At higher temperatures 7 decreases. The weak maximum
in 7p (czocn,) near 6 1 may disappear when
Comptonization and marginally important processes are
properly accounted for.

The dashed-dotted curve in Figure 7 shows that
neglecting spatial diffusion increases the result by a factor
of 3. As 7, > 04 for 6 < 10, Comptonization is also
expected to be important. Comptonization acts similarly
to spatial diffusion in being a photon density-
enhancement mechanism (at photon energies of order 6).
Increasing the photon density and thus the pair
production rate lowers the high-z root (see Fig. 6).
Including Comptonization would only lower t; and
reduce the importance of the effect. Spatial diffusion
and Comptonization, therefore, work as self-regulating
mechanisms, keeping the solution z(f) at a value of order
unity. Thus, Comptonization is not expected to lower
the solution curves by more than a factor of 3.

For 6 < 2 the density of pair producing photons is
dominated by annihilation photons. By noticing that the
generation rate of annihilation photons, (1,)4, is twice
the annihilation rate, (1), and using equations (1),
(5)-(8), (57), (77), and (80), the annihilation photon
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density, (n,)4, in terms of the total particle density

becomes

1/2

e _ (A )7, (81)
ny +n- Z va

which is about 1 for # =} and decreases for larger 6.
Note that the result is independent of whether spatial
diffusion is included or not.

The results in § V and Figures 2 and 4 show that
photon-photon absorption due to annihilation photons
at <2 is the only important absorption process.
Equations (27) and (80) give

z 1/2
) ey olson. @

Evaluating equation (82) for 6 =1 at photon energy
x ~ 2, where the annihilation spectrum peaks, gives
7,, ¥ 0.087; = 0.18. The effective absorption optical
depth, as discussed by Rybicki and Lightman (1979),
is enhanced by the prolonged pathway due to spatial
diffusion giving t.¢ = [1,,(t,, + 77)]'’* ® 0.3t 2 0.7 for
the case considered above (neglecting Klein-Nishina
corrections). Comptonization will, when included, make
tr and thus 7.4 smaller. On the other hand, photon
absorption will lower the pair producing photon density
and the pair production rate, thus raising the equilibrium
z-value (see Fig. 6), 7, and t.. The net effect of
including photon absorption and Comptonization is
difficult to estimate, and a detailed calculation is needed
to determine the behavior of the high-z root at 8 < 2.
At larger temperatures absorption effects are negligible.

d) Properties of the General Solutions

For ty>107*% equation (66) must be used to
determine the equilibrium pair density. The solutions
are shown in Figures 7 and 8. The critical temperature
0.(ty), beyond which there are no equilibrium solutions,
deviates by less than 79 from 0,,, for T4 < 10™* and
decreases rapidly with increasing ty for Ty > 1074,
Photon-photon processes dominate the pair production
for 1y = 107! and 0 > }. The model, however, breaks
down at ty ~ 10™!, where Comptonization and absorp-
tion processes need to be included.

The total power, A, emitted per unit volume (the
cooling rate) from equilibrium pair plasmas is shown in
Figure 9, as is the cooling rate for coronal equilibrium
at temperatures 0 < 10~ (Raymond, Cox, and Smith
1976). The dotted curve shows the cooling rate one
would obtain by setting z =0, thereby completely
neglecting the existence of pair producing processes.
The cooling curves rise sharply near 0,,,, and large
heating rates are needed to maintain large equilibrium
pair densities. Including the effects of Comptonization
would make the cooling on the high-z branches even
larger.

To study the stability of the solutions requires a more
realistic treatment of the plasma. Nevertheless, assuming
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F1G. 9.—The total power emitted per unit volume, A (the cooling
rate), divided by the square of the proton density, N, as a function
of temperature 6. At small temperatures, § < 10”2, the cooling rate
is taken from the results of Raymond, Cox, and Smith (1976). The
dotted curve represents the cooling rate if there were no pairs present
(z = 0). The solid curves show the cooling rates from an optically thin
plasma in pair equilibrium. Each curve is labeled by its value of t .
The dashed curve represents the cooling rate expected from an optically
thick plasma in pair equilibrium.

a static situation, conservation of pairs and energy
demand

dz

7o 2p(z, 0) — 24(z, 0), (83)
and

de .

i H(z,0) — A(z,0) , (84)
where

€(z, 0) = Nmc2(1 + 22)[K,(1/0)/K,(1/8) + 30] (85)

is the pair energy density and H(z, 6) ergs cm ™3 s7! is
the heating rate. For equilibrium solutions H = A.
Equations (83) and (84) are rewritten to form a set of
two ordinary differential equations for z and 0. The
stability of the equilibrium solutions can be analyzed
using the method outlined by Pars (1965). For H
independent of z or 6, only the high-z solutions for
0 < 2 are unstable. The solutions for # <2 in a more
detailed treatment may however be stable. If H oc z2,
then de/dt = 0 for z > 1, as A oc z* for z > 1 (see § III),
and the plasma evolves isothermally. Figure 6 shows that
the high-z solutions are unstable to isothermal z
perturbations. In realistic cases H also depends on
temperature, and the actual heating mechanism must be
specified before the stability of the high-z roots can be
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determined. Finally, note that the radiation field has been
assumed to adjust instantaneously to changed con-
ditions. This is only marginally true on the high-z
branch, on which the radiation field is of importance.

The plasma considered here is assumed to be confined.
A necessary condition for gravitational confinement,
even in a relativistic potential (near a neutron star or
a black hole), is that the kinetic energy density of the
plasma is smaller than the rest mass energy density.
The corresponding constraint on z becomes

m,/m — 30 3
2| K, (1/6)/K,(1/6) + 36 — 2

where m,, is the proton rest mass. For 1 <0 < m,/m,
the inequality simplifies to z < m,/(66m). Equilibrium
plasmas above the dashed line in Figure 7 are not con-
fined, unless some additional confinement mechanism is
operating, such as magnetic confinement suggested by
Cavallo and Rees (1978) and Ramaty et al. (1980) in
the case of optically thick pair plasmas. The momentum
transfer from internally generated photons to pairs
during photon escape counteracts any confinement
mechanism. Finally, it should be noted that the Edding-
ton luminosity for an accreting pair plasma can be
decreased by up to a factor of m,/m.

z <

1|, (86)

e) Comparison with Other Work

BK included only particle-particle pair production
(the low-z case, § VIb) and thus solved equation (71).
BK’s result is in good agreement with ours, although BK
obtained 6,,, ~ 40 using a less accurate reaction rate P,,.

The low-z solution to Stoeger’s (1977) pair equilibrium
equation for 7y = 1072 is a factor of 107 smaller than
ours. The difference has three main reasons: (i) all
important processes were not included in Stoeger’s work ;
(ii) the reaction rate P,, calculated by Stoeger is a
factor of 10* too small; and (iii) Stoeger’s photon escape
time t.,. = Rt/c is only valid for 14 > 1.

After the completion of the present work, a preprint
from Lightman (1982) appeared which independently
extended the work of earlier authors in a way similar to
ours. That paper considered relativistic temperatures,
60 >3, and used relativistic approximations of the
reaction rates (calculated to logarithmic accuracy and
differing from ours by up to factors of 4). Lightman,
however, included Comptonization, using an approxi-
mate relativistic theory developed by Lightman and Band
(1981). As argued in § Vlc, this has a self-regulating
effect, decreasing the high-z roots somewhat. The
qualitative aspects of Lightman’s solutions for z > 1 are
similar to ours, although there are differences by factors
of 2 or 3. The behavior indicated in Lightman’s
Figure 1, where for 7y ~ 1073-10"* the low-z root be-
comes of order unity for 8 = 3-10, is inconsistent with
the low-z root of Lightman’s pair equilibrium equation,
where z < 1 for the same parameters. Note that Lightman
expresses the photon energy in units of k7, that
Lightman’s 7y parameter is a factor of 87/3 larger than
ours, and that Lightman solves the pair equilibrium
equation for y=2z — 1.
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VII. OPTICALLY THICK PAIR EQUILIBRIA

For a given R, all solution curves join a unique
curve n.(0) independent of the background proton
density N (or equivalently 7y), as shown in Figure 8 for
R = 102 cm. Although this unique solution curve (for a
given R) is somewhat uncertain for 6 <2 and has not
been determined for 0 < }, some qualitative considera-
tions can be made.

If the temperature  is smaller than §, Compton recoil
removes annihilation photons from the annihilation
peak, and the pair production rate becomes smaller.
Photon-photon absorption and Compton recoil then
work together to cause an increase in the equilibrium
pair density (see § VIc). Reverse absorption processes
(see Table 1) become important and the state of the
plasma becomes independent of the size R. The solution
curve, along which n,(x 2 1) & n,, reaches a minimum
temperature O, = 5—3 before joining the thermo-
dynamic equilibrium curve (the dashed curve in Fig. 8),
where all processes are balanced by their reverse
processes. In a pair dominated plasma (n, > N), the
thermodynamic equilibrium pair density is given by
(Landau and Lifshitz 1969)

B 1 © B,YZ
e L dy exp (y/0) +1°

n,(6) (87)

where # is the Compton wavelength. Setting n, (R, Opn)
from equation (79) equal to n, (6,,) from equation (87)
gives R ®2 x 107 cm for 0, = %. 0, is expected to
be a weak function of R for R > 10™* c¢m. For smaller
R, three-body absorption processes become important
before the solution curve reaches 0 =4, and 0, is
expected to be a strong function of R.

As discussed in § VId, 0,(ty) decreases rapidly with
increasing ty. Thus, there exists a 7, (which may depend
on N and R) of order unity such that 0,(t.) = Opn-
For 7y > 7, the equilibrium pair density is expected to
increase monotonically with temperature and to join the
unique solution curve at f X 0,,,;, as soon as n, becomes
much larger than N. The only equilibrium state at
0 > 0,,;, for a plasma with 7y > 7, is the thermodynamic
equilibrium state, as conjectured by BK.

The expected behavior of the total power emitted per
unit volume for optically thick pair plasmas are shown
in Figure 9 as dashed lines. Note that the total cooling
rate from the plasma region is not simply given by
A x (volume), but it is reduced by absorption processes.

VIII. GENERAL DISCUSSION AND SUMMARY

The cooling curves in Figure 9 show that steady
plasmas are kept at three characteristic temperatures,
T = T, = 10* K, O, and 0,,,,, over a wide range of
heating rates. The temperature T, is related to the
solution of the Dirac equation for a Coulomb field. The
energy gap between the two lowest energy levels is
3a2mc?/8, while the ionization energy is a?mc?/2. 0y, is
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related to the solution of the Dirac equation in vacuum,
where there is a minimum energy gap of 2mc? between
negative and positive energy levels. Finally, 0,,, is a
consequence of the fact that for two body processes with
two final states, such as pair annihilation, phase space
restrictions due to energy-momentum conservation
causes the cross section to decrease at relativistic
energies.

At T, an increased heating rate will maintain a higher
excitation and ionization level, without raising the
temperature by much, while at 0, and 6,,,, an increased
heating rate will maintain a higher equilibrium pair
density. The significant difference is that low-temperature
plasmas can reach complete ionization, while in high-
temperature plasmas the equilibrium pair density,
possible to excite from the vacuum, is only limited by
reaching thermodynamic equilibrium. This is the cause
for the large range of heating rates for which the
temperature will be kept at 0,,;, or 6.

The temperatures 6,,;, and 0,,,,, could play as important
a role in high-energy plasmas as the temperature T,
does in interstellar plasmas. However, necessary heating
rates are only available near compact objects, such as
black holes and neutron stars. There the dynamical time
scales are short and a strongly heated pair plasma may
not be in either thermal balance or pair equilibrium.
Nevertheless, even nonsteady pair plasmas, during their
evolution, could pass through a state of quasi-steady
equilibrium. Such is the case for scenario II in Cavallo
and Rees (1978), where the optically thick pair plasma
during its annihilation phase evolves down the 6,;,-
branch (see § VII) until 7, ~ 1.

Neither the heating mechanisms nor the thermal
balance equation were considered in this work. To do this
one must specify the macroscopic environment of the
plasma region, in which case it may be necessary to
treat the problem as time dependent and inhomogeneous.
Two such examples are thermonuclear flashes on the
surface of neutron stars to model gamma-ray bursts and
gas accretion onto massive black holes to model quasar
continua. Furthermore, it will be necessary to include
effects of magnetic fields and soft-photon generation. In
particular, Comptonized soft photons may play a major
role in determining the properties of realistic semi-
relativistic plasmas.

We summarize the obtained overall picture of possible
pair equilibria:

For 7y < 1., where 7, is of order unity, there exist
three temperature regions. At 0 < 6,;,, where 0, =
15—, there is only one (optically thin) solution to the
pair equilibrium equation. For 0;, < 6 < ,(ty)thereare
three equilibrium solutions: (i) the optically thin case,
(i) the marginally optically thick case (trr ~ 1), and
(ii1) the thermodynamic equilibrium case. The equilib-
rium solutions (i) and (ii) were determined quantitatively
in the temperature range 6 > 4. 6,(ty) is a decreasing
function of ty with a maximum value 0,,,, =~ 25. For
0 > 0,(ty) thermodynamic equilibrium is the only pair
equilibrium state. Finally, for 7y > 7, there is only one
equilibrium pair density at any temperature.
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