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Summary. The physical properties of a finite, thermal plasma in pair balance
are investigated as a function of the three dimensionless parameters:
(i) the temperature 0 (=k7T/mc?, where m is the electron mass), (ii) the
‘proton optical depth’ 7, (=n,07R), and (iii) the proton density n, or
radius R. At a dimensionless luminosity ! (= Lop/Rmc® =3L43/R14) 2 1
Comptonization of bremsstrahlung and double Compton photons dominates
the cooling. A determination of the steady pair density in such a Wien
equilibrium plasma (WEP) shows the existence of the two pair density
branches previously found for optically thin plasmas. Photon—photon
absorption modifies the pair annihilation line into a Wien tail.

The 7,—0 parameter space is divided into 11 regions, each characterized
by some combination of dominant processes. Pair effects cause part of
Tp—0 space to contain three possible states, two of which are pair
dominated. For 7, greater than 102~10° (depending on 7,) the plasma cloud
is necessarily in LTE.

In /-6 space pair annihilations cannot balance pair productions at
6 > 0max ~ 24 when [ <1 and at [ > lyg when /> 1 (and 6 < 0.4), where
Iwg ~ 4(2m)"20%% exp (1/8) is the luminosity of a pair-dominated WEP.
At 6 2 0.1 the requirement of pair balance can provide a stronger constraint
on the luminosity than the pair-free Eddington limit /g ~ 10* Rg/R, where
Rg is the Schwarzschild radius of the confining mass. At intermediate
temperatures, 1/3 <0 < 3, steady thermal plasmas are possible only for
luminosities smaller than Lg by a factor 500(Rg/R). The presence of
magnetic fields would strengthen these luminosity limits.

Objects observed at MeV energies are discussed with the emphasis on
pair effects.

1 Introduction

The formation of mildly relativistic plasmas in compact astrophysical objects such as
y-ray burst sources (Lamb 1982), active galactice nuclei (AGNs; Rees, 1981; Lightman
1982b) and some X-ray binaries is a natural consequence of, e.g. shock velocities greater
than 10*kms™' (cold matter gets shock heated) or strong enough MeV luminosities
*Ppresent address: NORDITA, Blegdams vej 17, DR-2100 Copenhagen 0, Denmark.
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(photon—photon pair production produces a mildly relativistic pair atmosphere —
Guilbert, Fabian & Rees 1983). While the physics of hot, though non-relativistic (6 = K7/
mc? < 1) thermal plasmas received much attention in the past (e.g. Felten & Rees 1972;
[llarionov & Sunyaev 1972; Lightman 1981 [L81]) it is only recently that progress has
been made in the understanding of the properties of relativistic (8 > 3) thermal plasmas
(Lightman 1982a [L82]; Svensson 1982 [S82]; Araki & Lightman 1983; Kusunose &
Takahara 1983).

Here we attempt to bridge the mildly relativistic temperature range (say 107? < 6 < 3) and
to explore the properties of a steady, finite, magnetic field-free, thermal plasma cloud
uniquely specified by three dimensionless parameters:

0 = kT/mc?, Tp=npoTR, n, =nyk>, (1.1)

i.e. the dimensionless temperature, the ‘proton optical depth’ to Thomson scattering, and
the dimensionless proton density, respectively (m is the electron mass, n, the proton
density, ot the Thomson cross-section, R the cloud radius, and X the Compton wavelength).
The part of parameter space considered is 107* < 6 < 10% (10K S T < 16'2K), any 7p,
and 107 <n, <1 (10" ecm™ S n, < 10% cm™). The treatment is kept largely analytical
by using a very simplified description of the radiative transfer. The assumptions adopted
are those of L82 and S82. In particular only internal photon sources are included, and
pair balance (pair production equals pair annihilation; pairs do not escape) and photon
balance (photon production equals photon escape) are always imposed.

Many properties of a plasma in (local) thermodynamic equilibrium, (L)TE, can be
obtained using macroscopic arguments only. In Section 2 we introduce the concept
of (necessarily local) Wien equilibrium, WE, and show that macroscopic arguments
together with some simple microscopic considerations give a unique luminosity—radius—
temperature relationship for a pure electron—positron pair cloud in WE. Microscopic
processes receive full attention in Section 3, where the pair balance equation at
mildly relativistic temperatures is solved with special emphasis on WE plasmas (WEPs).
Comptonization of bremsstrahlung and double Compton photons are the dominant
radiation mechanisms, while pairs are produced in photon—photon interactions.

With a solid understanding of the pair balance solutions it is possible in Section 4 to
divide the 7,—0 parameter space into 11 regions, each characterized by some combination
of dominant processes. The dependence on n, is considered separately. It is then a
trivial matter to determine the characteristics of a plasma cloud given 6, 7, and n,. The
luminosity as a function of 6 and 7, is determined in Section 5 for radii 10% cm (y-ray
burst source, black hole X-ray binary) and 10 cm (AGN). The effects of pairs are most
easily visualized in a luminosity—temperature diagram in which a large region is shown
to be forbidden for thermal plasmas in pair balance. The few objects observed at MeV
energies as well as objects observed at X-ray energies are discussed in Section 6 in terms
of the luminosity—temperature diagram to determine if pair production occurs in these
objects. Finally, in Section 7 some directions for future work are pointed out.

A few appendices contain details of soft photon production (bremsstrahlung, double
Compton, three quantum annihilation and radiative pair production) at mildly relativistic
temperatures, two-body reaction rates in WEPs, and an approximate treatment of mildly
relativistic Comptonization.

2 Equilibrium plasmas — some general aspects

When a plasma is in a thermodynamic equilibrium (TE; the photon chemical potential
My is equal to zero) or in Wien equilibrium (WE; u, < 0), macroscopic arguments suffice
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to determine important properties of the plasma. Of particular interest here are the pair
density in a plasma cloud in WE and its luminosity. It is useful to discuss first the
corresponding properties of a TE plasma. (Traditionally the terms TE and LTE have been
used to describe only the thermodynamic equilibrium situation where u,=0. To avoid
confusion we use WE to denote the thermodynamic equilibrium situation where u, < 0.)

2.1 THERMODYNAMIC EQUILIBRIUM

The relationship between the positron (or pair) density n,, the electron density n_, the
proton density n,, and the temperature § in an ionized hydrogen plasma in TE is discussed
in, e.g. Chiu (1968) and Wande] & Yahil (1979). Here we write the relationship in the form

0 3

nyn_ =7(_6 4(2—) eXp (_ Z/B)gTE(e,np), (2.1)
T

where the densities are further related through charge conservation

n_=ngtng. 2.2)

Two limiting forms of grg are of interest. At non-relativistic temperatures gt = 1, while
in pure pair plasmas

gre(0,n,=0)=[1+0.37260"% +0.47240 + 3(2m)~ "2 {(3)0%*]? (2.3)

to within 2 per cent [{(3) =1.202 is the Riemann zeta function].
As the photon density n, in TE is

n,=X"3¢(3)2r746°%, (2.4)

we find that the ratio of photons to particles is

2

ny 28 3 -1
= [§(3)] ;9 exp (2/0) gTE- (2.5)

nen_

In a pure pair plasma the photon to pair ratio, n/n,, increases exponentially towards
non-relativistic temperatures (8 <1) as ¢{(3) (86°/m)"? exp(1/6), while for relativistic
temperatures (6 > 1) the ratio becomes 4/3.

A spherical plasma cloud of radius R and temperature 7 radiates in LTE a luminosity

Lgg=4mR*0T*=7x10**R%, T2 ergs™! (2.6)

(R=R4 10" cm, T=Ts10°K, 0 is the Stefan—Boltzmann constant), which is a function
of R and T only. If, however, scatterings dominate the opacity then the luminosity is
reduced to (modified black body)

Lyg ~ 47R*0T* 13, 2.7

where 7. is the frequency averaged Compton scattering optical depth down to the layer
where a Planckian radiation field becomes established (or, equivalently, where an incident
radiation beam gets absorbed). The modified luminosity depends not only on T and T,
but also on the density and on the type of radiation mechanism that dominates.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://ads.nao.ac.jp/cgi-bin/nph-bib_query?1984MNRAS.209..175S&amp;db_key=AST

I8 MNRAS, Z209: “I7550

178 R. Svensson

2.2 WIEN EQUILIBRIUM

As Nature contains processes that do not conserve the sum of particles and photons it
follows that no real systems can be in true WE. However WE may be closely approached
(local WE) in finite systems if the time-scale for establishing WE is shorter than the time-
scales for photon production and photon escape. Contrary to the TE case the absolute
levels of photons and particles in WE follows only from microscopic considerations. Their
relative level is, however, given by macroscopic thermodynamic arguments (Svensson 1983)

2
Ny

=[ 26° ]2=§e3 (2/6) gy (2.8)
Kol o TPTEVE ‘

where K, (x) is the modified Bessel function of the second kind of order n and where the
numerically fitted polynomial

Nyl _

gwe(0)=1+3.762260 + 5.10546> +§93 (2.9)
T

is accurate to 0.06 per cent. At relativistic temperatures n?,/nm_ —1. This ratio behaves

similarly in both the WE and the TE cases. For example, in a pure pair plasma in WE

nyfn.=(860%/m)"? exp(1/6) for 6 < 1 and n,/n, =1 for 6 > 1.

We now show that for a pair-dominated (n, > n,) plasma cloud in WE there exists a
unique luminosity—radius—temperature relationship, just as was the case for an LTE-cloud
(equation 2.6). The concept of WE necessarily requires that radiation transport is through
scatterings, and not through true absorptions and emissions. If the total photon production
rate is 7, cm™3 57}, then the luminosity of a uniform spherical cloud becomes

4nR3 .
LWE= 3 3kTI’Z,),, (210)

where 3kT is the mean energy of Wien photons. The need to know the microscopic photon
generation process is eliminated by using the fact that in steady state the photon
generation rate, 7, is equal to the diffusive escape rate,

R -1 R -1
’/‘l'y=n'yte‘slc”’ Ry (E; Tw) = hy (E:TTgT) , (2.11)

where t is the diffusive escape time for photons, § is a geometrical factor (~1/3 for a
spherical cloud and ~1 for a slab; £§=1/3 is used in all figures), 7, is the Wien averaged
scattering optical depth (equation B14), 71 is the Thomson scattering optical depth of
the cloud

Tr=(ny +n_) ot R, (2.12)
and g.(0) describes the Klein—Nishina corrections of 7y, (equation B13). Domination of
pairs gives 71 = 2n40pR. Then 1, « (ny/n.)R™* which is a function of temperature 6 (see
equation 2.8) and radius R only. The luminosity of a pair-dominated cloud becomes

3

mc
Lwg=— R4(2m)""? 05"% exp (1/0)((g-8W%) ", (2.13)
oT

where the dependence on R follows from (volume/tes) < R3/R? « R. Expressing the
luminosity as a dimensionless quantity

L or
l= "‘——3=2.7L43/R14 (214)
R mc
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(L=L4s10*% ergs™), we find that the function Iwg=Lwgor/(mc®R) depends on
temperature only, has a minimum value of 20/¢ ~ 60 (if £ ~1/3) at 0 ~ 0.37(T ~ 2.2 x
10° K), and increases exponentially towards smaller temperatures. For sizes (from soft
X-ray time variability) characteristic of AGNs we have the minimum WE-luminosity
Lwg=2.2%x10* R4 ergs™!, which, remarkably enough, is of the same order of magnitude
as observed luminosities.

As the luminosity Lwg increases rapidly with decreasing temperatures (dL/d6 < 0) it
necessarily becomes equal to the luminosity L g (not L gp as scattering opacity dominates)
at some temperature ;. Here the plasma cloud becomes effectively thick (i.e. the radiation
field in the centre becomes Planckian) and the scattering depth 7. in equation (2.7)
approximately equals £7,,. The condition determining the transition from an effectively thin
to an effectively thick cloud is given by

3

60
R = (rw) — — (m" 0732 exp (1/0+)((g-8W%) " (2.15)
T
Although £7, is only known once the microscopic processes have been specified it is
clear from equation (2.15) that the ‘transition’ temperature 6, is only weakly (logarithmic)
dependent of the value of §7,. For R=10"cm the transition temperature becomes
0,=0.026, 0.029 for &7, =1, 100, respectively. Once effectively thick the cloud luminosity
increases with increasing temperature (dL/d6 > 0).

Thus in a pair-dominated WEP experiencing an ever increasing heating rate at
termperatures 6 < 0.37 the temperature first decreases, while n,/ny > 1 increases as
(863/m)? exp (1/6). At 6, the cloud centre reaches LTE, which causes the temperature
to increase, while n,/n, decreases initially as 1.2(86%/m)"? exp (1/6) until it approaches
its relativistic TE value of 4/3. The ratio n.,/n, thus achieves its maximum value at 6.

In an effectively thin cloud not dominated by pairs the luminosity normally increases
with temperature. Hence, dL/df should also change sign at some temperature 0. close
to the temperature where a cloud becomes pair-dominated if this transition occurs in WE
and if the temperature @ is less than 0.37. We conclude that for temperatures between
6 and 0. there should exist three possible states of the plasma cloud, one pair-free state
and two pair-dominated states (one in WE and the other in TE).

Although much information about pair plasmas in WE is obtainable from mainly
thermodynamic considerations, it is only by treating the microphyscis that we can make
further progress in understanding when plasmas are pair-dominated, what the dominant
processes are, and when WE is established.

3 Pair balance in mildly relativistic plasmas
3.1 THE GENERAL CASE

Instead of solving the full radiative transfer problem coupled with pair balance in a spherical
cloud we make some considerable simplifications leading to the necessity of solving at most
three non-linear algebraic equations, thus making a full exploration of parameter space
0, 1, n,) easy to perform. More precisely, only the conditions at some average point
(e.g. the centre) of the cloud are studied. The steady pair density is obtained by solving
the pair balance equation

(1)yy t ()ye + (Medyp + (e + (Firdep — 14 =0, 3.1)
where the first five terms represent the pair production rates [cm™3s™!] in vv, ve, vp,
ee and ep collisions, respectively, and where 7, is the pair annihilation rate. The

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://ads.nao.ac.jp/cgi-bin/nph-bib_query?1984MNRAS.209..175S&amp;db_key=AST

I8 MNRAS, Z209: “I7550

180 R. Svensson

spectral density of photons enters in the first three terms requiring a solution of
the radiative transfer problem.

The photon generating processes in a magnetic-field free plasma are listed in Table 1
in S82. When optical depths are small only bremsstrahlung (ep —>epy or ee —>eey)
is important. If, however, Comptonization of soft photons occurs, then double Compton
scattering (ey > eyy), three quantum annihilation (e¥e™ -+y7yy), and radiative pair
production (yy—>e*e™y) (all of which exhibit infrared divergencies) may compete
with bremsstrahlung. All these processes have a spectral emissivity, 7(x, 8)dx cm™3 s}
of photons at dimensionless energy x (in units of mc?) that at soft energies (x < ) are
of the form

dx
A(x, 0)dx =nynycrio — F(x, 6), (3.2)
X

where n; and n, are densities (see Fig. 1 for details), « is the fine structure constant, 7 is
the classical electron radius, and F(x, 0) is a temperature-dependent function given or
determined in Appendix A and shown in Fig. 1 (only for bremsstrahlung is there a weak
logarithmic dependence of F on x; x is chosen to be 107% in Fig. 1). It is immediately
clear that three quantum annihilation is negligible relative to e"e~ bremsstrahlung, both
emissivities being proportional to n,n_. Large radiative pair production requires large
photon densities, which in turn implies large scattering depths and the establishment of
WE. In WE, however, radiative pair production is no more important than three quantum
annihilation (equation A20, and the RPP and 3QA curves in Fig. 1). Double Compton
scattering, being dependent on the photon density, may dominate over bremsstrahlung
in WE. In pair-dominated WE this occurs for 8 < 0.1 (using the DCWE curve in Fig. 1),
as n,/n, reaches exponentially large values towards smaller 6 (equation 2.8). The radiation
processes of interest are thus bremsstrahlung and double Compton.

Assuming that the Compton scattering opacity dominates at pair producing photon
energies the radiative transfer problem is simply treated using escape times and by assuming
an isotropic photon distribution. When the scattering optical depth is small (7,5 < 1) the
photon spectral density, ng(x) cm™3, is determined by

’;’ep(x) + Rge(x) + 714 (x) — t;;an(x) =0, (3.3)

where the bremsstrahlung emissivities are discussed in S82 and where fos = R/c. The
radiation field ng(x) can be solved for explicitly and inserted into the rates in the pair
balance equation. The temperature-dependent part of these rates is obtained by finding
analytical fits to the results of numerical integrations (see S82 for a detailed discussion of
the rates in equation 3.1). The pair balance equation then reduces to a polynomial equation
for the pair density variable

z=n./n, (34)

with coefficients dependent on the parameters 6 and 7, (see L82 and S82), and the solving
of a single equation determines z (6, 7).

When Comptonization is important the spectral density of equation (3.3) is replaced by
the sum of a Wien spectral density

Ny (x) dx = 1, ¥%(x/0)* exp (— x/6) dx/6 (3.5)
and a ‘flat’ part which, when bremsstrahlung dominates, is approximately given by
6 x2,dx ( 1 Y1 )
np(x)dx=———exp(—x/0 + , 3.6
p) =252 exp (/) (o 1 (3.6)
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Figure 1. The dimensionless emissivity F(x =107, 6) =5 (x, 0) x/(n,n,cric) in the soft photon limit
(x < 0). The process and nn, for each curve are +—: e*e” bremsstrahlung, n.n_; ep: ep bremsstrahlung,
(ne+n_)np; ee: e*e® bremsstrahlung, n} +n?; DCW: double Compton from a Wien distribution,
ny(m +n.); DCDC: double Compton from a double Compton distribution, Ny(ne +n_); DCWE:
double Compton in pair-dominated Wien equilibrium, n?; 3QA: three quantum annihilation, n.n_; RPP:
radiative pair production in Wien equilibrium, n.n_, respectively. F(x, 8) depends on x (logarithmically)
for bremsstrahlung only. See Appendix A for definition of Ny and further details.

where xp, (determined by equation D2) is the photon energy below which the local
spectrum is Planckian. The last factor of equation (3.6) is designed to be of order unity
when Comptonization is saturated (y; > 1; for y;, see Appendix C) and to make the ‘flat’
spectrum approximately coincident with the bremsstrahlung spectrum near x ~ 6 when
Comptonization is unimportant. The pair-production rates for the spectral shapes of
equations (3.5) and (3.6) are evaluated in Appendix B. The photon density, n,, of the
Wien peak (equation 3.5) is determined by solving

Feiy + fochyC — taeny, =0, (3.7)

where r‘z78 and r‘z?c are the total generation rates of bremsstrahlung photons and double

Compton photons, respectively, with energies larger than x,, (Appendix AS), where fp
and fpc are the fractions of these photons that scatter into the Wien peak before escaping
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(Appendix C), and where fq = (R/c)(1 + £7y,) with the Wien averaged scattering optical
depth 7, being given by equation (B14).

To bridge the transition from the optically thin case to the Comptonized case the follow-
ing interactions between the three types of radiation fields were found to be important in
the photon—photon pair production term in equation (3.1): ng(x) - ng(x) (fig. 3 in S82),
nw(x)*ny(x) (equation B6), and np(x)-n,(x) (equation B7). Then to determine
completely the properties of a plasma cloud in the general case, three non-linear algebraic
equations (equations 3.1, 3.7 and D2) must be solved for z, xp,, and the dimensionless
photon density

r=nylng, (3.8)

in terms of the three parameters 0, 7p, and n,. The solutions for z as a function of @ for
107% < 7, < 10% and for n,=1072° (n, ~ 10" cm™3) are shown in Fig. 2. For a given
Tp there are two solution branches, one high-z and one low-z, that merge at the temperature
0c(1p, ny). For 6 > 0.(7p, n,) pair productions occur faster than pair annihilations and
pair balance does not occur. The temperature 6 is a decreasing function of 7p and depends
only weakly on n,. Equivalently, for every 6 in an effectively thin plasma there is a
maximum possible scattering optical depth 73'®*(8, n,), which is shown in Fig. 3 (the
rightmost thick solid curve) for n, =107'°. The high-z branches in Fig. 2 join the dashed
curve (representing the pair density in TE) at (7, n,,). Here the plasma cloud becomes
effectively thick and larger values of z only occur in TE at larger temperatures. Equivalently,
there exists a minimum possible scattering optical depth 7'3““(6, n,) for the high-z state
in an effectively thin plasma (shown in Fig. 3 by the leftmost thick solid curve). The

log T[K]
9 110 1

107

log g

Figure 2. The dimensionless pair density z =n, /rzp in an effectively thin plasma in pair balance is shown
for ny =1072° by the solid curves. Each curve is labelled by its value of the ‘proton’ optical depth
7p =hpoTR. The dashed curve shows the pair density in an effectively thick plasma (i.e. in thermo-
dynamic equilibrium) with n, = 10~?°. The dashed-dotted curve shows the pair density for 7p = 1072 and
ny =1071°,
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Figure 3. The 7,—6 parameter space of the high-z solutions in an effectively thin plasma is bounded by
the thick solid curves. For given Tp and n, there exist a maximum temperature, 8c(rp, ny), and a
minimum temperature, 8¢(rp, ny). Above 0. there is no pair balance and at 6; the plasma becomes
effectively thick. Below the dotted curves pairs dominate (z > 1). The allowed parameter space
depends weakly on n, and can be divided into four characteristic regions: (I) optically thin (v <1);
(III) moderate Comptonization (v >1 and y, <1); (IV) and (V) saturated Comptonization (y, > 1).
In region V double Compton dominates the photon production, while elsewhere bremsstrahlung
dominates. The dashed curve shows the Thomson optical depth 7 of the high-z solution for 7, = 107
and ny =1071°,

thick solid curves in Fig. 3 enclose the 7,—0 parameter space of the high-z solutions for
n, =1071% Below the dotted curve the plasma is pair-dominated (z > 1). In region I the
Thomson optical depth 7t is less than unity. Here optically thin bremsstrahlung dominates
the radiation field. In region III moderate Comptonization of bremsstrahlung photons
occurs (77 > 1 but y; < 1), while in region IV saturated conditions are reached (y; > 1).
At high enough radiation densities double Compton scattering provides the soft photons
(region V). The weak dependence on n, is seen from the dot-dashed curve in Fig. 2,
representing the high-z branch for 7, =107 and n, = 107'°. The corresponding Thomson
scattering optical depth, 7, (including pairs) is shown by the dashed curve in Fig. 3.
The maximum possible 7 in effectively thin pair-dominated plasmas is about 110 for
n, =107'% and about 200 for n, =1072°.

When photon—photon interactions dominate the pair production (rp=2 1) and
Comptonization occurs (77 2 1) at mildly relativistic temperatures an analytical analysis
of the pair balance solutions is possible. For bremsstrahlung-dominated plasmas equation
(3.7) can be explicitly solved for r leaving two algebraic equations to be solved for z and
Xm- As the dependence on x,, is weak a first-order analysis requires the solving of only
one equation for z(6, 7p, xy) (see Section 3.3). For double Compton-dominated plasmas
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both 7 and xy, (here the dependence on xy, is of crucial importance) are solved for explicitly
leaving only one equation to be solved for z (6, Tps 1) (see Section 3.4).

3.2 WIEN EQUILIBRIUM PLASMAS (WEPs)

On a microscopic level Wien equilibrium demands (approximate) detailed balance for
Compton scattering (ye 2ye) and photon—photon pair production/pair annihilation
(yy2 ee”) only. Pair-dominated WE cannot occur at relativistic temperatures as the
photon—electron pair production rate (equation B10) would exceed the photon—photon
rate (equation B6) for 6 2 4. Furthermore the photon spectrum for 67! < x < 0 (the
flat part above pair production threshold) does not have a Wien shape, and photon—photon
interactions between the ‘flat’ photons and the Wien photons limit the possible existence
of WEPs in our bremsstrahlung-dominated case to 8 S 1.
At each photon energy there is a detailed balance in WE,

na(x, 0)dx = ca.,.(x0) n(x, 0) dx (3.9)
and
Res(x, 0) dx = ca(x, 0) n(x, 0) dx, (3.10)

where n(x, 0) is the Wien distribution (equation 3.5), @y (x0) cm™! is the photon—photon
absorption coefficient (equations 14—18 in Svensson 1983), a.(x, 6) cm™! the Compton
scattering opacity (equation 62 in S82), 7i5(x, 8) cm™2 s™! the pair annihilation emissivity
and 7ig(x, §)cm™>s™' the Compton scattering emissivity. For photon energies where
Ay (x8) > acs(x, 0) one also has 7i5(x, 0) > neg(x, ) (see fig. 3 in Ramaty, McKinley &
Jones 1982 for the case 6 ~ '4). The detailed balance in equations (3.9) and (3.10) is not
satisfied for photon energies where max [Tyy=ayyR, Ts=acsR] < 1. Once the absolute
values of n, and n, are known from the pair balance solutions a self-consistency check
can be made. For the case 7,=107%, R =10" cm, and pair dominance (z > 1) we find
that only for 6 < 0.4 (somewhat dependent on the chosen parameters 7p and R [or n_])
are the optical depths greater than unity at pair-producing photon energies. When few
pairs are present (z < 1) at mildly relativistic temperatures the corresponding requirement
is approximately 7, 2 3. The analytical treatment of a WEP below is thus limited by these
constraints.

In a pair-dominated WEP the Wien distribution is established predominantly by
photon—photon absorption/pair annihilations (equation 3.9) above a photon energy X,
(determined by a.,[x.0] =ac[x., 6]) and by Compton scatterings (equation 3.10)
below x.. In fig. 3 of Ramaty et al. (1982) x.~ 3 for 8 ~ % and it can be shown that
x¢ approaches unity as [1—0In(1.6/6)]"! for 6 <1. In a WEP with few pairs (z < 1)
Compton scatterings dominate at pair-producing photon energies in establishing the
Wien distribution.

Pair balance implies that the rate at which photons are absorbed in pair productions
equals the rate at which annihilation photons are produced (=271, ). When Comptonization
is negligible (77 <1 or, equivalently, § 2 5 for z » 1 [see Fig. 3]; 7p S 1 for z < 1) then
the bremsstrahlung emissivity dominates the pair annihilation emissivity (either due to the
‘Klein—Nishina’ decline of the cross-section [6 2 5, z > 1] or due to lack of pairs [rpS1,
z < 1]) and the absorption optical depth (due to pair production) is much less than unity
making it unnecessary to include annihilation photons and photon absorption. In a
pair-dominated WEP (6 < 0.4, z > 1) on the other hand, the pair annihilation emissivity
and photon—photon absorption are of crucial importance at photon energies larger than
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x.. The photon distribution above x follows directly from detailed balance (equation 3.9)
eliminating the need for a detailed radiative transfer calculation. Furthermore, pair
annihilations are not included as a source term in the photon balance equation (3.7) as the
net production rate of photons from pair annihilations and photon—photon absorptions
is zero.

For temperatures 0.4 <0 <5 in a pair-dominated plasma and for 1< T, <3 in a
plasma with few pairs the photon distribution at pair-producing energies is neither Wien
nor optically thin bremsstrahlung. Here 77 >1 allowing Compton scatterings to distort
the bremsstrahlung spectrum but max [Tyy> Tesl <1 at pair-producing energies not allowing
for the establishment of WE. For z > 1 the photon distribution around x = 6 reflects the
kinematics of the last Compton scattering of soft photons into this energy range as well as
the cancelling effects of photon—photon absorption and annihilation emission. The peak
of the photon distribution is therefore expected to shift to somewhat softer energies as
compared with a Wien peak. Although our simplified treatment does not account for this
change in spectral shape, the effect on the magnitude of the pair production rate (and on
the pair density solutions) is not expected to be large.

We obtain the following qualitative picture of a pair-dominated WEP. A typical photon
is produced at soft energies either by bremsstrahlung from the pairs or by double Compton
scattering of the photons in the Wien peak against the pairs. Compton scatterings against
the pairs rapidly brings the soft photon in to the Wien peak, where it stays while slowly
diffusing out of the plasma. Occasionally, however, the photon may scatter into the Wien
tail above x., where it will ‘turn into’ a particle (i.e. pair produce). As the photon re-emerges
in the subsequent pair annihilation, it may, depending upon its energy x, either be more
likely to scatter back into the Wien peak (x < x.) or to pair produce again (x > x.). The
small number of pairs (relative to photons) present in the ‘photon cloud’ is just temporarily
reconverted photons, which in the shape of pairs produce soft photons and Comptonize
these into the Wien peak to replace those escaping from the cloud. The pairs, furthermore,
provide the scattering medium for the photons, prolonging their escape.

3.3 BREMSSTRAHLUNG-DOMINATED WEPs

In a WEP the pair balance equation (3.1) reduces to
z4z2=rt = exp (—2/6) gwg, (3.11)
863

(using equations 2.8, 3.4, 3.8 and B5) relating the pair density z to the density » of Wien
photons. For 6 0.4 only ep and e*e” bremsstrahlung are important, and using the
non-relativistic spectral emissivities (Appendix A) the solution of the photon balance
equation (3.7) becomes

3/2
r=(1+22)[(1+22)+2%%(z + 22)]T—a(—) 612 B In%(0/xcon) £fB &7 (3.12)
P \TT

where xcop is the solution to equation (D1d). Eliminating r in the pair balance equation
then gives

z+2%=(1+22)*[(1+22) +2¥%(z +2%)]2 G(O, ), 1, 2), (3.13)
where
a\*(1p\* of 0 "
G(G’ Tp,n*,Z): (#) (A) In (—)CXP (_ 2/6)(EfBgT) EWE: (314)
2n/ \0 X coh
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The dependence of G on n, and z (through x.o, and fg) is weak. Neglecting this depen-
dence on z it is found that for G > G.=3.35x 1072 there exist no real solutions of
equation (3.13), while at G < G, there are two positive real solutions. Then from equation
(3.14) it follows that for each set of 0 and n,, there exists a maximum value of 7, beyond
which there are no solutions,

1/2
7= () 0 exp (1/20) 0 0o (eFgr) g (3.15)

which is a decreasing function of 6 for temperatures considered here (6 < 0.4). 75'*%(6, n,, =
10719) is shown in Fig. 3 as the upper thick boundary of region IV. Inversely, for each set
of 7, and n, there exists a maximum temperature 0.(tp, n,) beyond which there is no
steady pair density. At 6 < @, the pair balance equation has a low-z solution, z = G « §~*
exp(—20)(¢fp)®>, and a highz solution, z=2"Y4G Y4 « @ exp (1/20)(£fp) V> The
branches merge at § = 6, where z ~ 0.106 (again neglecting the weak z-dependence of G)
as long as 0,504 (or 7,2 2-3). For smaller 7p the high-z branch only is in WE
for 6 < 0.4. Along these high-z branches the Thomson scattering optical depth 7y is

TT= 2ZTp =214 (77/0‘)1/2 6 eXp (1/20) [ln (e/xcoh)]—_1 (EfBg'r)_I/zg\_Nllé“
z>1, Tp < 1), (3.16)

which decreases monotonically with temperature over its range of validity (8 < 0.4). The
dashed curve in Fig. 3 shows 7 for 7,=107% and n, =107'°. The high-z branches become
effectively thick when 7 and z reach their TE-values (equations 2.4 and 2.1) at 8(rp, n,,)

or, inversely, TS‘“‘(G, n,). Forz > 1 equation (3.12) gives

B = 1, [{3)/] 212271 07 exp (3/20)[1n (0/xcon)| ™ (6 nrgHE) 2
(z > 1). (3.17)

Fig. 3 shows Tpmi“((?, n, =107'%) as the lower thick boundary of region IV.

Changing geometry from spherical to slab (half thickness # and Tp = NpO7h) causes &
to increase by about a factor of 3. The geometry sensitive low-z branch increases by a
factor of £2 ~ 10, while most other aspects of the pair balance solutions change by less than
a factor of 2. When saturation is moderate there is also a ¢-dependence through f.

The simplified treatment in this section showed the main features of the pair balance
solutions when WE is maintained and bremsstrahlung dominates. For 6 < 0.1, however,
the photon densities become large enough for double Compton scatterings to become
important.

34 DOUBLE COMPTON-DOMINATED WEPs

The photon production rate, ﬁ? €, from double Compton scatterings dominates over the
corresponding rate for bremsstrahlung, ﬁs, in providing Wien photons when fDChlyjc >
/B r'zl,s. Double Compton is only important for saturated Comptonization and fpc ~ fg ~ 1.
For z <1 e7p interactions are the main bremsstrahlung mechanism and using the rates in
Appendix A gives (cf. equation 19 in L81, which differs by a factor 4)

-DC

7 ' 1/2
';.% = r(g) 160%" [In (4n0/x con)] ™" gpc > 1 (z<1, 6 < 1), (3.18)
Y
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for double Compton to be dominant (gpc is a relativistic correction factor given by equation
A10a). In WE there is a definite relationship between r and z and equation (3.18) can be
written as a condition on z using the low-z limit of equation (3.11),

2> 271907 exp (—2/6) In* (410 /X cop) EWEEDE (z <1, 0<1). (3.19)

In a pair-dominated plasma double Compton competes with e"e~ bremsstrahlung giving

» DC

n r

—;B = 8m''205% [In (410 /% con)] ™" gpc > 1 (z>1, 0<1), (3.20
Y

for double Compton to dominate. As r/z in a pair-dominated WEP is a function of
temperature only (equation 3.11) equation (3.20) becomes a condition on 6 only (with
a very weak dependence on xp),

0 < 1/In[(2"2160%)"" In (4n0/% eon) gl g1k] (3.21)

or 6 < 0.11 for any reasonable value of x,,. The transition to double Compton dominance
is easily noticeable in Fig. 2, where the high-z branches show a bend at 8 ~ 0.1.

L81 discussed in detail the double Compton process in finite, strongly Comptonized,
non-relativistic plasmas without pairs. His results are easily generalized to include pairs
and relativistic corrections. The photon balance equation (3.7) becomes

16
N~y = Ny0 ; T% 62 In (0/xcon) £€r€DC 6 <1), (3.22)

where x o, is obtained by solving equation {D14)
Xeon = 2man,K2gpc)"’? (6<1/8) (3.23)

(cf. equation 25 in L81). The crucial feature of double Compton-dominated plasmas is that
both the photon escape rate and the photon production rate are proportional to 7, as is seen
in equation (3.22). The only remaining n,, dependence is in x¢op in the logarithmic factor.
For small changes in 7 or 6 steadiness can only be maintained if 7, changes exponentially,

ny=%"3(8%/20) exp [~ 7/(8ar}0%£8,8nC)] &nC (0 < 1/8) (3.24)
(cf. equation 72 in L81). From equations (3.11) and (3.24) pair balance gives
z+z2=n;*(32ma?) ™" fexp [~(2/0) — n/(4ar%0” (2 -gnc)] EwEEDE (6 <1/8), (3:25)
or, equivalently,
71 = 7p(1 +22)

= (m/40)"? [— 0% In [n3321a® (z + 2%) 0 gwepc] — 2017V ((2,8hc) ™2 (3.26)

which is to be solved for z as a function of 0, 7, and n,. The low-z solution is directly
obtained from equation (3.25) by neglecting the z2-term on the left-hand side and by
replacing 71 with 7, on the right-hand side. The very strong dependence on ¢ at small z
is shown by the 7, = 102 curve in Fig. 2. The high-z solution cannot be obtained in explicit
form, but equation (3.26) can be rewritten as an implicit equation for 7¢(8, R) independent
of the proton density n, as expected for a pair-dominated plasma.
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Similar to the bremsstrahlung case there is a maximum 7, (for given 6 and n,) beyond
which there is no steady pair balance. Regarding 7, as a function of z, then differentiating
equation (3.26) to find 72X gives

P
s

(Tpmax)2 =—0 _2(Zc + Z%)(l + 220)—4 (éngDC)-la (3'27)
a

where 79'%* = 7,(z.). Using the fact (see Fig. 2) that z, ~ 107% < 1 and eliminating z, from

equations (3.26) and (3.27) gives

T = (n/4e)"* [~ 0% In [n3320° 0(r5™)* tewieg gbel — 201712 (¢87gpc) ™2 (3.28)

The solution 7'®%(6, n,, =107'%) or, inversely, 0.(rp, n, =107 is shown in Fig. 3 by the
upper thick boundary of region V.

The high-z branches become effectively thick when 7 and z reach their TE-values
(equations 2.4 and 2.1) at 0(7p, n,) or, inversely, 7 (6, n,). For z > 1, equation (3.22)
gives

5 =, Yt o205/ exp (1/0 XIn |/ [405(3) 0gpcl ] EgrgpcgTE) 2 @>1),
(3.29)

shown in Fig. 3 as the lower thick boundary of region V. The 'rg‘i" and 7, boundaries
in Fig. 3 join at 0 i (n,,) determined (using equations 2.1, 3.25, and 3.27) by

emin = 2/111 II27T_3I’Z;29I3nin In [.n.Z (4049 min)_ngEgl_)zcg’ﬂE] gTE]]- (3-30)

The one possible steady pair density at 6 < 0, is necessarily less than z,~ 1072, and
pairs are always unimportant in steady plasmas for 8 < 6 pn.

In effectively thick conditions where double Compton dominates (6 < 0.1) one has
Xeon/0 ~ 0.140Y% < 1. Thus the Planckian radiation field is never completely self-
absorbed due to the double Compton process, but it is maintained at x > x.., by direct
and inverse Compton scatterings (see Thorne 1981 for a detailed discussion).

3.5 COMPARISON WITH OTHER WORK

Stoeger (1977) considered pair balance in fully saturated (fg = 1) bremsstrahlung-dominated
WEPs in the temperature range 0.1 <6 <1 and for 7, ~ 1.3 and 13. As the low-z solution
was used even when z > 1 the existence of a maximum temperature 0.(7,) was not found.
In fact for 7, ~ 13 no solutions exist in the temperature range Stoeger studied as 6, ~ 1.

Yahel (1982) determined the pair density in a three-layer cloud by iterating between
solving the radiative transfer problem using Monte Carlo methods and solving the pair
balance equation for each layer. The results (pair density, emerging spectrum, luminosity)
from the second iteration were presented for nine different choices of parameters. In the
dominant intermediate layer having an outer radius R = 5 x 10*® cm the chosen parameters
were 6 ~ 0.8 or 2 and 7, ~ 1 or 10. There is a strong disagreement between Yahel’s and our
results. For 7,=10 we find that there do not exist any effectively thin steady solutions
at either 6 ~ 0.8 or 2 as 6, ~ 0.1 (see Fig. 2), while Yahel obtains z ~ 200—500. Continued
iterations would have caused z to continue to increase until effectively thick conditions
are reached at z of order 1029, In at least five of the nine models we conclude that the
presented results do not represent the solutions to the posed steady state problem.

Stepney (1983) used a time-dependent radiative transfer code to let the pair density of
a slab at a fixed temperature evolve to its steady value (if < 6.), thereby obtaining the
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low-z solution branch (the high-branch being unstable to isothermal perturbations). The
solution curves for 0.01 < z < 0.1 differ in temperature by about a factor of 2 or less from
our results for 1/3 < 7, < 1. There is also agreement as regards the values of z (~ 0.1) at
f.. However, the slopes of 75%(9) in Stepney’s temperature range 0.6 < 8 < 1.6 differ
indicating that the discrepancies between the results of the two methods would increase
at larger and smaller temperatures.

Zdziarski (1984a, b) used the Monte Carlo method to determine the radiation field in
a spherical cloud of given 6, 7, n, and z. The net pair production rate was calculated and
the value of z giving zero net pair production (i.e. pair balance) was obtained iteratively,
allowing for the determination of both the high- and low-z branches. The obtained solutions
for § > 0.15 and 1073 < Tp < 10° differ in temperature by less than a factor of 2 from
our results.

These two latter works complement that of this paper in that for a restricted set of
parameters 0, 7, and n, a very detailed study of the properties throughout the cloud can
be made, especially as regards spectral shape, absorption, anisotropy and non-homogeneity.

4 Classification of steady mildly relativistic plasmas

Combining the results in previous sections with those on Comptonization of bremsstrahlung
(Felten & Rees 1972; Illarionov & Sunyaev 1972) and of double Compton radiation (L81)
in non-relativistic plasmas, it is possible to divide the 7,—6 parameter space at fixed n, into
the 11 regions listed in Table 1 and shown in Figs 3 and 4. The conditions and the straight-
forwardly derived expressions determining the location of the boundaries of the regions
are given in Table 2 together with some notational comments.

Pair production effects cause the region of parameter space outlined by the thick
boundaries in Fig. 3 to have two effectively thin states (the low-z and the high-z solutions
of Section 3) and one effectively thick state (TE). Fig. 3 classifies the high-z solutions, while
Fig. 4 classifies the low-z solutions in this ‘multi-valued’ part of parameter space. A plasma
is effectively thin below and effectively thick above the thick dashed and the thick solid
curve in Fig. 4, while the high-z states of Fig. 3 are all effectively thin. Another major
division occurs along the dotted curves where n, = n,. Pairs dominate (by number) below
the dotted curve in Fig. 3 and to the right of the dotted line (64) in Fig. 4. The position of
the 0 line is determined using equation (2.1) in the non-relativistic limit,

0. =2/In[2n;%(0+/27)°]. 4.1

Table 1. Regions in 7,6 parameter space.

Region Local spectrum Dominant processes

I Bremsstrahiung Bremsstrahlung

11 Bremsstrahlung Bremsstrahlung, coherent scattering

I1I Wien Bremsstrahlung, moderate Comptonization
IV Wien Bremsstrahlung, saturated Comptonization
v Wien Double Compton, saturated Comptonization
VI Planck Bremsstrahlung, free—free absorption

VII Planck Bremsstrahlung, tree—free absorption, coherent scattering
VIIL Planck Bremsstrahlung, Comptonization

IX Planck Double Compton, Comptonization

X Planck Bremsstrahlung, Comptonization

X1 Planck Bremsstrahlung, free—free absorption
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Table 2. The boundaries in 7,—6 parameter space. The photon energies Xapg, Xt, X, and X¢op are
discussed in Appendix D. Forz <1 and 6 < 1x¢op = 0.0687,.0°%%In (2.256/x o), While for z > 1 the
right-hand side should be multiplied by 1.2zY2. The photon density n$E and the pair density n T ¥ (for
n+>np) in TE are given by equations (2.4) and (2.1), respectively. The steady photon densities nl? and
n,?c are the solutions of equation (3.7) in the non-relativistic limit when bremsstrahlung and double
Compton, respectively, dominate. The normal (y) and the ‘saturated’ (y1, fg) Comptonization
parameters are defined in Appendix C. The geometry factor ¢ is discussed in Section 2.2 and Appendix C.
The relativistic correction factors g (equation B13), gpc (equation A10a), and gwE (equation 2.9)
are included where necessary. Planckian photons below Xecoh Were included in the determination of
boundary IV—VIII. The soft emissivities were used in the x =@ conditions (except for the X—-XI
boundary), and using the exact emissivities will give slightly different numerical factors.

Boundary Conditions Expression
=1 <1
111, I-III T = {T". <D
6~6 z>1)
-1V Xabs = 0 Tp = 34n3l 67
11111 y=1/2 7p=0.35 9712
[I-VII Xt =6 Tp = S5.8n3Y?e™*
-1V =1 Tp =In"2(8/xcon) (£ In (1+ 46 +1662)] V2 (z<1)
7p =7.3671[21n (2.256/xcon) £8r&DC ]V z<1)
V-V nB=nDC 6 = [In [0.0446 "~ In (2.256/x¢on) &Rk giic] 17! ~ 0.11
z>1)
5 TE 7p = 11n3"267* [In (2.256 /x cop)]™*
IV-VIII ny =ny 21172 12
X[1=(xcon/0)1"2 (£fB)
V-IX nDC = nTE 7p =17.36"" [In [90/(6gpc)] tg-gpcl™?
VI-VII X, =0 6fs = 0.37ny"
VII-VIII Xcoh =0 6B = 0.29n%°
ﬁB = r'lDC, be
VII-IX . 0pC = 0.661n. In [90/(6P epc)] gD
Ry =Ry
=y DC
IX-X ny = an, 6y~ =0.12
ny = HIE
X-XI Yeoh ™ es = gB = o
- 055 =08 =25
ny = I’ZIE U U

The plasma is effectively thick at all temperatures for 7p larger than its value at point
c in Fig. 4,

(rp)e = 11n 2 HIn [ 71 [(rp)2 £/n, ]2 15 ]} 17226722, (4.2)

valid when the double Compton-dominated region V exists (n, <107, see below), and
having values roughly from 10?% to 10° for n, ranging from 107 to 1072*. For plasmas
with 7, > (7p)4 the steady pair density z is a monotonically increasing function of tempera-
ture 6. For given 7, < (1,)q the plasma moves to larger temperature as z increases until
the thick solid curve, 6.(rp, n,), is reached. Increasing z further moves the plasma into
the parameter space of Fig. 3, where the temperature decreases with z until effectively
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Figure 4. The Tp—0 parameter space of a steady plasma for n, =10~'°. The regions, their dominant
processes, and their boundaries are given in Tables 1 and 2. Pairs dominate (z > 1) to the right of the
dotted curve. The plasma is effectively thick above and effectively thin below the thick dashed and solid
curve. The plasma cannot cross the thick solid curve but instead moves into the effectively thin high-z
parameter space in Fig. 3 if the thick curve is approached from regions - V. The narrowness of region V
is caused by the extreme sensitivity of the steady photon density in double Compton-dominated
plasmas to changes in Tp and 6.

thick conditions (at 0¢[7p, n,]) are approached. The plasma once again moves to larger
temperature as z increases and eventually back into Fig. 4 to the right of the thick solid
curve.

The boundary curves I-II, II-III, and IV—V are independent of n, and the points a,
b([7ply=0.66n3"?), and ¢ move along these curves when n, changes (to the right for
increasing n,.). Therefore the effectively thin regions (I— V) dlmmlsh as n, increases. The
behaviour of the effectively thick boundaries 65, 011?, 0 6 C 98, and 07 between
regions VI and XI with changing n, is shown in Fig. 5 (cf. flg. l in Thorne 1981 for
non-relativistic temperatures) and the corresponding expressions are given in Table 2. The
plasma is pair dominated above 6.(n,.) and degenerate below

0geg = [1 + (3120, )¥31V2 —1. (4.3)

In most of the 6—n, parameter space (regions VIII, IX, X) Comptonization of soft photons
establishes the Planckian radiation field. L81 and Thorne (1981) showed that above BEC
double Compton scattering dominates bremsstrahlung in producing soft photons. Here we
find that once the plasma is pair dominated enough, pairs will re-establish the dominance
of bremsstrahlung (at Bgc ~ 0.12). Furthermore, double Compton is never important for
Ny 2 107%. Finally, the decline of the Compton cross-section at relativistic temperatures
and the increase of pairs (n, «6%) cause free—free emission and absorption (xn2) to
dominate over Comptonization (<n,) above 45 ~ 2.5.
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Figure 5. The 0-n, parameter space of a plasma in thermodynamic equilibrium. The regions, their
dominant processes, and their boundaries are given in Tables 1 and 2. Above 6, (the dotted curve) pairs

dominate (z > 1), while below 8 deg the plasma is degenerate. The path taken by a flat Friedmann
universe is shown by 6 gyy (the dashed curve).

5 The luminosity from steady mildly relativistic plasmas

The dimensionless luminosity /(9, 7, R) is shown in Fig. 6(a) (R =10° cm) and Fig. 6(b)
(R=10"cm) as a function of 6 for 107 <7'p<104. While Table 3 gives simple
expressions for / in various regimes. The luminosity (or cooling) curves for different 7,
become independent of the proton optical depth 7p and join a unique single cooling curve
when the plasma becomes pair dominated. For / <1 optically thin bremsstrahlung cooling
dominates, being <82 for 6 <1 and «01ln@ for § 2 1 as long as pairs are negligible.
The optically thin luminosity curves do not depend on R as for two-body processes

Table 3. The luminosity from steady plasmas. arr is the mean free—free opacity, e is the Thomson

scattering opacity, and a, is given by equation (B12). See the text of Table 2 for some further notational
comments.

Regions Dimensionless luminosity

Lu ) {T;a(16/3) (26/m)V* (1+ 2.676 + 5.476° — 2.466°) ©<l,z<l)
’ 7?,0(188[1n (2n6 + 0.14) + 4/3) @=>1,z<1)
111, IV [=1504(26/m)"'* In* (4n6/xc0on) fB (6<l,z<1)
\Y% I=Rorx*(2/a) 637 ” exp [—n/(SaT 6% tgre6p0) ] (5878DC) ™! z<1

v, v I=hyg = 4(27r)“295’2 exp (1/6) (¢g,8 ) ™ z>1

VI, XI 1=Igg =Ropk~2(x*/15) 6*

VII I ~lIgglasslaT)"?

VI, X I ~ Igp[aB/(caynTE)) 2

IX I ~ I[P C/(caynTF)) 12
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Figure 6. (a) The luminosity L =IRmc?*/o7=1IR 3.7 X 10*® erg s=' from a steady spherical plasma cloud
of size R =10° cm. The ‘proton’ optical depth, Tps labels each solid curve. The dashed line shows the
luminosity from a black body and the dotted curve the luminosity from a pair-dominated plasma in
Wien equilibrium. Pair-dominated Wien equilibria are realized only for 6 < 0.4. Along the Tp = 10° curve
the plasma cloud is effectively thick, but due to scatterings the luminosity is suppressed relative to the
black body luminosity. (b) Same as (a) but for R =10!* cm.

7
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L «R3n? « R7% (neglecting temperature-dependent factors) and [/« L/R is independent
of R. In a pair-free plasma 71 =7p, and therefore /=1(0, 7,), while in a pair-dominated
plasma 71 =71(0) and hence [=1(6). For / 2 1 moderate and saturated Comptonization
of soft bremsstrahlung and double Compton photons provides the cooling. The abrupt
change in the behaviour of the cooling curves for 7, =107 and 10° is caused by the onset
of double Compton dominance. The exponential dependence of the Comptonized double
Compton luminosity on temperature brings the plasma into effectively thick conditions
after only a slight increase in temperature. It is clear from Fig. 6(a, b) that there exists a
maximum 7,(R) (o1, equivalently, a maximum 7,[n,] given by equation 4.2) for which a
plasma is effectively thin. Furthermore, over a range of temperatures (07° < 6 < 07;) the
effectively thick luminosity is reduced below the blackbody luminosity due to scattering
effects as is shown in Fig. 6(a) and the last three entries in Table 3.

Pair production effects cause a large region in -0 space to be forbidden for steady,
stationary, thermal plasmas. This region is bounded by the pair-dominated cooling curve,
whose behaviour at scattering optical depths 77 <1 and 7¢> 1 is obtained using very
simple arguments. As shown by Bisnovatyi-Kogan, Zel’dovich & Sunyaev (1971) the
requirement of pair balance, when particle—particle pair production dominates (71 < 1),
limit allowed temperatures to be less than 0 ,,,, determined by

T
420

O Omax ~ 24. At 0 > 0, pair annihilations can never balance particle—particle pair
productions independent of the amount of pairs present. When 71 > 1 the plasma is in WE
and for a pair-dominated WEP the luminosity is given by Lyg(6) (equation 2.13 and shown
by the dotted curve in Fig. 6a, b) applicable for § < 0.4. The pair-dominated cooling curve
for 0.4 S0 < 0,y can only be determined by using the pair balance results of Section 3.
The resulting cooling -curve is approximately constant, [ ~ 20, for 1/3 <6 < 3. Thus a
luminosity larger than L ~ 7 x 10*3 Ry, ergs™ can only emerge from a steady, thermal
plasma cloud at subrelativistic (0 < 1/3) temperatures. (If one incorrectly assumes the
validity of pair-dominated WE (the dotted curve) at all temperatures, then two tempera-
ture states, one low temperature (0 < 0.37) and one high temperature (6 > 0.37), are
allowed at a given / > 60 (c¢f. the two pair-dominated branches in Fig. 1 in Liang 1979).)

The dimensionless Eddington luminosity of a pair-free plasma is Ig = 2m(mp/m)(Rg/R)
~1.2x10%*(Rs/R), where m,, is the proton mass and Ry is the Schwarzschild radius of
the black hole trying to confine the cloud. The double Compton process is never of
importance for < 2 x 10® and is therefore never dominant in Eddington limited plasmas
with R/Rg2 5. In pair-dominated plasmas the Eddington luminosity becomes l%a" ~2m
(Rs/R)gxn(0) < 1.3gkgn(0) for R 2 5Ry. The factor ggn(=1 for 6 < 1) allows for Klein—
Nishina corrections, depends on the spectral shape, and generally increases for 8 > 1. It
follows from Fig. 6(a, b) that pair-dominated plasmas certainly exceed the Eddington limit
for 6 < a few. For 8 2 a few the pairs are in any case relativistic and cannot be gravita-
tionally confined. We conclude that pair-dominated thermal plasmas are necessarily
dynamical (pair winds) at all temperatures unless confined by a dynamically dominant
magnetic field. Then, however, efficient cyclosynchrotron radiation provides additional
soft photons that once upscattered to x 2 1 produce pairs, which changes the details of the
pair balance solutions (the pair density on the high-z branch decreases, while that on the
low-z branch increases). Magnetic field strengths, B, much below equipartition values are
sufficient to decrease 6.(7p, n,, B), now a function of B also (Araki & Lightman 1983;
Kusunose & Takahara 1983). For saturated Comptonization of cyclo-synchrotron photons

(5.1)

0 max In Omax ~
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the luminosity of the plasma is simply /wg(6), as the luminosity in WE conditions is
independent of the process producing the soft photons (for a strong enough soft photon
source the photon spectrum at energies below 36 may even have the power law shape of
unsaturated Comptonization). The size of the forbidden region in /—6 space below I ~ 20
increases with increasing field strength. If, on the other hand, for some reason the tail of the
photon distribution falls off more rapidly than a Wien tail, then the size of the forbidden
region above [~ 20 decreases with increasing steepness of the tail. A complete spectral
cutoff at x = 0 permits any / for 6 < 1.

If confinement does not occur, then the pair-dominated cooling curve (together with
I =1g) approximately marks the boundary to a dynamical (denoted above as ‘forbidden’)
region in /-6 space, where steady or non-steady flows of pairs and photons streaming
away from the heated plasma region is a consequence of the momentum transfer from
photons to pairs. Part of the total luminosity emerges as the energy flux of a pair wind.
The prohibitively difficult description of such mildly relativistic flows is not attempted
here. The existence of a critical luminosity /[0 ~ 1] ~ 20 (or less if strong enough magnetic
fields or external soft photon sources are present) separating static plasma clouds from
dynamical ones (pair winds) is likely to have observational consequences. The spectra
emerging from pair winds may have qualitatively different features as compared to ‘static’
spectra either due to radiative transfer effects in the wind or due to the effect of the wind
on the surrounding medium.

We find that for compact sources with R < 500R; it is the onset of intensive pair
production (making [ > l‘lf:ai') and not | ~ Iy that marks the transition to super-Eddington
situations at temperatures 1/3 < 6 < 3. For sources of maximum compactness (R ~ 5Ry)
this transition occurs at /< /g for 6 2 0.1 and at /~0.01lg for 1/3<60 <3, ie. at
luminosities considerably smaller than what is normally assumed in the accretion disc
literature, where a self-consistent inclusion of pair effects is still to be made.

6 Mildly relativistic plasmas in astronomical objects

Hard X-ray or soft y-ray emission are signatures of some X-ray binaries, of AGNs, and
of y-ray bursts. In some objects a spectral feature at these photon energies has been
interpreted as possibly being an optically thin pair annihilation line (Nolan & Matteson
1983 for Cyg X-1; Bassani & Dean 1983a for NGC 4151 and MCG 8-11-11; Mazets et al.
1981 for vy-ray bursts). We give a brief discussion of the few objects observed so far
(excluding y-ray bursts, which are likely to contain strong magnetic fields) with the aim
of locating them in /-6 space (Fig. 6).

Although the shortest detected time variability at soft X-ray energies in the X-ray
binaries Cyg X-1 (Nolan et al. 1981) and GX 339-4 (Motch et al. 1983) is about 50—80 ms,
the true shortest X-ray time-scale is likely to be similar to or shorter than the shortest
detected optical time-scale, 10—20 ms, in GX 339-4 (Motch, Ilovaisky & Chevalier 1982)
and the time, 7.5 ms, the hard X-rays (> 3.5 keV) lag behind the soft X-rays in Cyg X-1
(Page, Bennetts & Ricketts 1981). For CygX-1 the low state luminosity is 2 x 1037
(d/2.5 kpc)® ergs™! (Sunyaev & Triimper 1979; d is the distance) and for a source size
10Rg=3x10"cm < R <cAt~3x10%cm with Af~10ms and M=10M, we obtain
2 <1< 20. The relatively soft temperatures (§ < 0.2) found when fitting the data with
unsaturated Comptonization spectra (Sunyaev & Triimper 1979; Nolan & Matteson 1983)
together with the moderate value of /(< 20) indicates that the plasma in this object is not
pair dominated (i.e. it is below the pair-dominated luminosity curve in Fig. 6). The same
holds true for the high energy component (8 ~ 1/3 but / smaller by a factor 10) found by
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Nolan & Matteson (1983). Future detected X-ray time variability of less than 20 ms
(implying />1) would rule out the optically thin bremsstrahlung interpretation of
Mészaros (1983). The break energy (=6 > 0.2) and therefore the total luminosity of
GX 339-4 is not yet determined (Nolan et al. 1982). The luminosities of these two
objects may conflict with the steady luminosity limits imposed by pair balance when an
equipartition magnetic field is present.

The observational data of AGNs at y-ray energies is summarized in Bassani & Dean
(1983b). An MeV-hump is observed in the two Seyfert galaxies NGC 4151 (Perotti et al.
1979, 1981b) and MCG 8-11-11 (Perotti et al. 1981a) with y-ray luminosities of up to
L(0.5-5MeV)=2x10* and 7x10% ergs™!, respectively. The minimum variability
time-scale of soft X-rays, Aty, from NGC 4151 is about 1 day (Tennant & Mushotsky
1983; Lawrence 1980). If Aty is representative for the variability time-scale, At,, of the
MeV-emission, then taking R ~ cAty gives I ~ 20. For 0 in the MeV range this value of /
just coincides with the plateau of the pair-dominated luminosity curve in Fig. 6. The
shortest detected Aty in MCG 8-11-11 is about one month (Ward et al. 1977), which gives
I =~ 24 using the same assumptions as above. The soft y-ray emission in NGC 4151 and
MCG 8-11-11 is therefore consistent (if Az, ~ Atx) with a steady, pair-dominated plasma
having a moderately Comptonized Wien peak. The presence of an equipartition magnetic
field is expected to limit the temperature in steady plasmas at / ~ 20 to 6 smaller than
unity, thus necessitating non-steady conditions (pair winds?) in these objects.

Interpreting the MeV-hump in the two galaxies with an optically thin pair annihilation
line (Bassani & Dean 1983a) is inconsistent with the assumption of pair balance. The
bremsstrahlung emissivity dominates the pair annihilation emissivity at 8 2 3, while in a_
steady pair-dominated plasma at § <5 Comptonization, pair annihilation, and photon-
photon absorption conspire to produce a Wien peak (8 < 0.4) or a distorted, somewhat
redshifted Wien peak (0.4 < 8 < 5). No signature of an optically thin pair annihilation
line is expected from plasmas in pair balance.

Part or all of the soft X-ray emission from NGC 4151 may be the result of repeated
flaring occurring at a number of sites throughout the source region (Lawrence 1980). Our
idealized uniform cloud is nevertheless expected for large enough /(2 20) to describe
approximately the pair-dominated conditions in between the flaring sites. In particular,
the limits imposed by lyg(0) should remain valid.

A time variability At of about 1 day seems to be emerging as a time-scale of special
significance in AGNs. It forms a distinct lower envelope almost independent of the
luminosity over 6 orders of magnitude for 2/3 of the objects plotted in a Ar—L diagram
by Bassani, Dean & Sembay (1983). Tennant & Mushotzky (1983) found that only one
out of 38 AGNs had X-ray variability on time-scales shorter than 3hr. Similarly, in a
study of 51 QSOs Zamorani et al. (1984) found X-ray variability to be common on
time-scales of 1 day or more, but not on shorter time-scales. The size of the source region is
then R~ (0.1-1)cAr=(03-3)x 10" cm and the luminosity L,, characterizing the
onset of pair production at mildly relativistic temperatures (/ ~ 20 at 6 ~1) becomes
Lpp ~ (2—20)x 10** erg s™! (or less if magnetic fields and soft photon sources are present).
Reichert et al. (1983) found in a study of 27 AGNs that for L(2—10 keV) > 10** erg s™!
no object showed intrinsic absorption, while at L(2—10 keV) < 3 x 10*3 erg s™! the X-ray
source could with equal probability either be uncovered, partially covered or mostly covered
by absorbing matter. If the power-law spectrum (energy index ~ 0.7) extends to 511 keV,
then the corresponding luminosity is (2—7) x 10** erg s™!, similar to the estimate of Ly,
made above. It could be that pair winds cause the lack of absorption at L > L, by
dispersing the absorbing matter. It is, however, not known what fraction of AGNs have
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spectra extending to a few hundred keV. The spectral turnover energy in most QSOs is
expected from constraints set by the diffuse X-ray background (Rothschild et al. 1983)
to occur at § < 0.2. This coincides approximately with the maximum allowed temperature
in a steady, pair-free plasma cloud radiating at its Eddington limit [Ig ~ 10%(R¢/R) ~10?,
see Section 5 and Fig. 6].

The weak point of the discussion above is the assumption that Az, ~ Arx. Cnly after
detailed observations of spectral shape and time variability in the MeV-range will we be
able to make definite statements about the existence of pair plasmas in AGNs.

7 Discussion

We have attempted using the simplest possible means to explore the consequences of
imposing pair balance in a mildly relativistic, confined, thermal plasma cloud. In between
the previously treated extreme cases of optically thin plasmas and of plasmas in thermo-
dynamic equilibrium there exists a regime with plasmas in Wien equilibrium. The compli-
cated interplay between photon and pair processes in such plasmas was elucidated. The
main result was the existence of a pair-dominated luminosity curve that separates a pair-
free region from a forbidden one in /-6 space (Fig. 6). Forbidden combinations of / and 8
may, however, be allowed if some of our assumptions (in particular that of confinement)
are relaxed. Requiring pair balance limits allowed luminosities at mildly relativistic
temperatures to values two orders of magnitude smaller than the Eddington luminosity
normally employed in accretion models.

This initial study of mildly relativistic plasmas was necessarily incomplete in several
respects. In particular, the heating mechanism and the initially heated component (protons,
pairs or photons) were not specified and the subsequent energy transfer between the
components was not treated (except for our approximate description of Comptonization).
The distribution function of the pairs should be determined self-consistently (a power law
tail, at least at acceleration sites in the plasma, is a likely possibility). Magnetic field
effects, especially the cyclo-synchrotron process should be included. Besides determining
the detailed radiative transfer (Stepney 1983; Zdziarski 1984a, b) the dynamical conse-
quences of the momentum transfer from photons to pairs need considerations probably
necessitating a kinetic, rather than hydrodynamical, treatment of the pairs. Finally, the
astrophysical context, whether accretion on to compact objects or explosive energy release
near such objects, should be specified and taken into account. Forthcoming work will
address some of these problems.
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Appendix A: soft photon production

All processes of order o with infrared divergences are considered.

A.l BREMSSTRAHLUNG (ep > epy, ee > eey)

Useful approximate expressions for the spectral emissivity in the mildly relativistic tempera-
ture regime (6 ~ 1) at soft photon energies x < min[1, @] are constructed by combining
the results obtained at non-relativistic (8 <1) and relativistic temperatures (8 > 1) in such
a way that the resulting expression reduces to the non-relativistic and relativistic expressions
in respective limits.
From the expressions at 8 <1 given by Kylafis & Lamb (1982) and at 6 > 1 by Quigg
(1968) we obtain for ep-bremsstrahlung
dx 16 0 5 -
Rep(x)dx =(ns +n_) npcria— —In [47)(1 +C,0) —](1 +20 +20%) [exp (1/0)K,(1/0)] ",
x 3 x (AD)

where C; =nexp(5/2)/2 ~3.42 and n=exp(—vg), Y ~ 0.5772 being Euler’s number.
An exact numerical evaluation of the spectrum shows that the deviations are at most
5 per cent for x < 0.1 § at mildly relativistic temperatures.

Similarly, using the results for soft e*e*-bremsstrahlung at 6 <1 (Maxon & Corman
1967) and at 6 > 1 (Alexanian 1968) gives

s g\ o dx16 2 01(3 _
Nee() dx = (n2 +n%) cria — 5 In |[4n(C, +C50%)— E\/ie +262) [exp (1/0)K,(1/0)]7 Y,
X x
(A2)
where C, = exp(29/12) ~ 11.2 and C; = n? exp (7/2) ~ 10.4. The deviation from the exact
numerical results of Stepney & Guilbert (1983) is at most 20 per cent at their smallest
photon energy x = 0.056 and is likely to be less at softer photon energies.
The e*e -bremsstrahlung spectrum is a factor 2¥2 larger than the ep-spectrum at non-

relativistic temperatures, while it is 2 times larger than the e*e*-spectrum at relativistic
temperatures (S82). We obtain

s _(x)dx =nyen_cria dx 13—61n [417(1 +C;30%) g] 2(\/2 +268 +26%)[exp (1/0) K, (1/6)]7,
x x
(A3)

where the term 26 in the second to last factor was chosen ad hoc to conform to the corres-
ponding term in equation (Al).
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The emissivities in equations (A1)—(A3) are shown in Fig. 1 by the curves labelled ep,
ee, and +—, respectively.

A2 DOUBLE COMPTON SCATTERING (ey ~>eyYy)

The differential cross-section for the double Compton process in an arbitrary frame in the
soft photon limit (x < min[1, x,], where x;, is the incoming photon energy in the particle
rest frame) is given by

do I pr dog afl 1+8
—(x,x,)=—f dxy =2 (1) (= In—= — 2), (A4)
dx X Xe/(1+ 2 p) dxl m 6 l—ﬁ

where do./dx, is the Compton scattering differential cross-section (Jauch & Rohrlich
1976), x, is the outgoing photon energy in the particle rest frame, §=(y2 —1)"?/v and
v¥=1+x,—x;. The last factor of the integrand comes from the classical photon emission
probability for a charged particle accelerating from rest to a final velocity 8 (Jackson 1975).
In deriving equation (A4) use has been made of the Lorentz invariance of dx/x. The
following expressions,

do( ) 1 232 2
—(x, x;)=—art—x
dx Yox %ot

x (1 +4.393x, +2.064x2 +9.724 x 1072x3 - 9.541 x 10~4x*

+7.757 x 1076x%)™? (log x, < 1.6) (AS)
and
do 1 2 1 5
—(x, x)=—ar: —{In? 2x,——1In2x, — — —— (log x, > 1.6) (A6)
dx x Xr 2 6 4

are based on the asymptotic ones (the non-relativistic limit was obtained by Gould 1979)

and have errors of less than 1.3 per cent.

Using the relativistic rate formalism of Weaver (1976), the double Compton spectral
emissivity, 7ipc(¥)dxcm™s™, from photons with energy distribution n(y)dy cm™>
interacting with electrons and positrons with Maxwell-Boltzmann distributions of

temperature 0 is given by

o) dx = (n, + ) e ds K0 |
0

00

do
dx, xy — (X, Xy)
dx

" J’ Cdyyin(y)exp [~y + yix)26]  (r<min[LO]). (A7)
0

For a photon distribution
n(y)dy =N, %(y/0)? exp (-y/0)dy/6, (A8)

where N, is a normalization factor (N, is precisely the total photon density, n,, when
q = 2), the spectral emissivity becomes

Apc(x) dx = (n, +n_) Nyc dx [20** 9K,(1/6)]

b do
X J‘ dx, d—x (x, xr) x?(l + 2xr)(1'Q)/2Kq -1 [(1 + 2xr)l/2/9]
0

(x <min[1, 6}). (A9)
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For a Wien distribution (g = 2) the emissivity at 8 < 1 is given by
dx 128
npc(x)dx = (n. +n_)nycria ~ —3—62gDC(0) @<1), (A10)
with
gpc(®)=(1+13.910 +11.056% +19.9203%)"!, (A102)

where the latter factor is a fit (error < 3 per cent) to a numerical evaluation of equation
(A9). The emissivity, shown in Fig. 1 by the curve labelled DCW, increases as 62 at small

temperatures, reaches a maximum at 6 ~ 1 and decreases at relativistic temperatures roughly
as 6 ~2;

dx 1 3 7
Apc(x)dx=(n+n_)nycria— —(21n* 200 + —In 26 + — — - @>1). (Al1)
x 02 2 12 8

L81 and Thorne (1981) obtained equation (A10) in the 6 < 1 limit, and Lightman & Band
(1981) calculated the first term in equation (All) (obtaining a different logarithmic
argument).

The double Compton emissivity for a double Compton-like photon distribution (g =—1)
is shown in Fig. 1 by the curve labelled DCDC. Here the emissivity does not decrease at
relativistic temperatures mainly because the abundance of soft photons offsets the Klein—
Nishina decline and the dominating interactions occur at x,~1 (or y ~ 6~!). At non-
relativistic temperatures the emissivity becomes

dx 16
fipe(x) dx = (n++n_)N1,crf,oz———9-(92 B <), (A12)
X
while at relativistic temperatures the emissivity becomes independent ot the temperature
1 e 1do
npc(x)dx =(ny+n_)Nycdx— J. dx, — —(x, x;)
2 Jo x, dx
dx
=(ny +n_)Nycria— 242 @>1). (A13)
X

For steeper spectra the emissivity increases monotonically with temperature.

A3 THREE QUANTUM ANNIHILATION (efe™ = yv7y)

Using the classical photon emission probability for two particles of equal but opposite
charges of energy vy.n coming to rest in the centre of momentum frame (Jackson 1975),
the electron—positron pair annihilation cross-section o (Y.m) (Jauch & Rohrlich 1976),
and the Lorentz invariance of dx/x the differential cross-section for three quantum
annihilation in an arbitrary frame in the soft photon limit can be shown to be

do 1o /l+p63 1+8

R e e ) FNCo) (AL4)
dx X7\ Bem 1 —Bem

The non-relativistic and relativistic limits are

do 1 2 4 7 )

—(x, 7cm)="are_ﬁcm 1+—BCm - -- (Bem <1), (A15)
dx X 3 5

and

do ) 4 ) 1

— (X, Yem) = —are 2 In® 2y —In 2yem + = (7cm >1), (Al6)
dx x Yém 4
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respectively. Though a semi-classical description has been used here as well as for double
Compton scattering the same results are obtained using relativistic quantum mechanics.
The matrix element calculated by Mandl & Skyrme (1952) for double Compton scattering
can be applied to three quantum annihilation using the appropriate substitution rules.
In the soft photon limit one again obtains equation (A14).

Ore & Powell (1949) calculated the spectral emissivity from three quantum annihilations
at rest. In that case there is, of course, no infrared divergence, as classically no deceleration
occurs before annihilation. In the general case of moving annihilating pairs the spectral
emissivity is characterized by a double Compton-like spectrum plus an annihilation peak.

The three quantum annihilation spectral emissivity, 73qa(x)dx cm™s™%, from thermal
pairs of temperature § in the soft limit becomes

Azqa(x)dx =nyn_cdx 407" [K,(1/6)]7?

ad do
X f @Yom Ve 268 o 5 Yom) KiQYem/0) (< min[1,0]).  (A17)
,

At non-relativistic temperatures

dx
N3qa(x)dx =n.n_cria — 40 0 <1), (A18)
x

while at relativistic temperatures

, ax 1 1
n3qa(x)dx =nyn_crga— P (2 In? 210 + - — 5) @>1). (A19)
X

The behaviour of 713g4(x) at mildly relativistic temperatures is shown in Fig. 1 by the curve
labelled 3QA.

A4 RADIATIVE PAIR PRODUCTION (yy—=>¢*e™y)

Radiative pair production can classically be thought of as two oppositely charged particles
created at rest and accelerated to a final energy Y., in the centre of momentum frame.
The differential cross-section is given by equation (A14) of the annihilation cross-section
is replaced by the photon—photon pair production cross-section. To obtain the spectral
emissivity, sigpp(x)dx cm™3s™!, from radiative pair productions by photons with Wien
distributions one can simply use the detailed balance relations between the pair annihilation
and the photon—photon pair production processes (Svensson 1983), giving '

2 2
"y [Kzz(; 50)] Aiza(x) dx. (A20)

nigpp(x) dx =
n+n_

If the plasma is in Wien equilibrium, then 7igpp(x) = 7139 () (using equation 2.8), as can
be seen in Fig. 1.

A.5 TOTAL PHOTON PRODUCTION RATE

3

The total production rate, #, cm™ s71, of photons with energies larger than x, is given by

ny= f i dx n(x). (A21)

*m
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The spectral emissivities 72(x) decrease exponentially at photon energies above x = 8. We will
approximate 71(x) in the energy range x, < x < 8 with the soft rates obtained above and
with a sharp cutoff at x =6. The soft bremsstrahlung rates are of the form x~!1n (46/x)
(A depends on temperature only), while the other rates are of the form x~!. Evaluating the
integrals gives

fe dx x7 ' In (A6/x) = 1n (6/x ) In (4/0/x ) (A22a)
and
fe dxx™ ' =1In (0/xp). (A22b)

A.6 THE ABSORPTION COEFFICIENTS

The total absorption coefficient, @,p(x) cm ™, is the sum of the absorption coefficients for
the separate processes (bremsstrahlung and double Compton in this paper). Using Kirchhoff’s
law gives

Y 7i(x)
i
aps(*) = L ai(x) = ——— , (A23)
i ¢ npp(x)
where ngg(x)dx cm™3 is the ‘black body’ photon density in an energy interval dx,
npp(x)=X"3772x?[exp (x/0)—1] .. (A24)
For x < 0 the absorption coefficient becomes
7\3
Baps(X) = " 1 (x0)™" [frep(x) + ee(x) + 711 _(x) + Aipc(x)). (A25)

Appendix B: two body reaction rates in Wien equilibrium plasmas

B.l PHOTON—PHOTON PAIR PRODUCTION (yy >e"e")

The photon—photpn pair production rate, (72+)y 4 ecm™3 571, from two photon distributions

of power law shapes with exponential high energy cutoffs (described by equation A8 with
normalization factors N, power law slopes g; and cutoff energies 6;, i =1, 2, respectively)
is given by

N1N2 2 1 (01 (ql - qz)/2
( +)’Y’Y 1+5l2 e 1 2 62

X J' dso $(so) S(()q,+q2 —4)/2qu -q, [2(s0/6,62)"], (B1)
1

where ¢(so) is a function (= the angle averaged cross-section) given by Gould & Schréder
(1967; for corrections see Brown, Mikaelian & Gould 1973), and 8, is the Kronecker delta.
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For non-relativistic ‘cut-off” energies (6,, 6, <1) the production rate becomes
NN 1 9,\ @ -42)/2
(e)yy = = crd ~ w2012 ~ 19} - 4: (—‘) exp [~2/(6102)"]. (B2)
1 + 6 12 92

Two special cases of equation (B1) are of interest in this paper. First, consider pair
production when both photons belong to the same Wien distribution. In this case 6,5 =1,
6:=0,=0, q, =q,=2,and N, =N, = n,,, where n., is the photon density and equation (B1)
simplifies into

l oo
(ﬁ+)77=n%cr35n9‘5 f dso®(s0)Ko(255%/6). (B3)
1

For Wien distributions it is also possible to write the production rate as an integral over the

photon—photon pair production cross-section, 0,, (Jauch & Rohrlich 1976), using the
results of Weaver (1976),

00

(ﬁ+)77 = n'zy c63 .f dxcm xgm va(xcm) K1 (2xcm/0), (B4)
1

where x., is the photon energy in the centre of momentum frame. Equation (B4) is

intimately connected with the expressions (equations 23 and 24 in Svensson 1983) for the

thermal pair annihilation rate, 714, cm™3 s~ as is demanded by detailed balance. The ratio

between the two rates simply becomes

(ﬁ+)77 = n% [Ki(l/e)]z
20 1°

: (BS)
na nyn_
which is unity in Wien equilibrium (using equation 2.8).
The behaviour of (i24),, for Wien distributions is shown in fig. 2 in Weaver (1976),
where the non-relativistic result is also given. The following expressions based on the
asymptotic ones, ‘

1
(714)yy = N2 cr? P 7203 exp (—2/0)(1 + 2.880°93%) 0<1) (B6a)
and
1
(14)yy=n3 cr? B 1072 1n (210 +0.38) @>1 (B6b)

have a maximum error of 2 per cent.

Secondly, we are interested in the case g; = — 1, g, = 2, i.e. a Wien distribution interacting
with the ‘flat’ part of a fully Comptonized photon distribution in a bremsstrahlung-
dominated plasma. Here 6,=6,=0, N,=n,, 6,,=0 and the pair production rate is
written as

1
(4)yy=Nynycr? 2 n? exp (—2/6)1(8), (B7)

where 0.99 < I(0) < 1.3. The function /(6) becomes 1 for 8 < 1, while in the relativistic
limit

2 -3 2 4 ) 28
16) = — J. dso $5° $(so) = - J dXcm Xem [U'y'y(xcm)/re] = ~ 0.99 6>1).
m Ji Ui 1 On (B8)

For our purposes setting 7(8) =1 at all 8 provides sufficient accuracy.
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B.2 PHOTON-ELECTRON (OR POSITRON) PAIR PRODUCTION (ye > ee’e”)

The photon—electron pair production rate, (f+)ye cm™3 5™, from a photon Wien distribu-
tion interacting with a particle Maxwell—Boltzmann distribution of the same temperature
is given by

oo

(f14)ye = Ny(ms + n_)cé 0% [K,(1/0)])7! j dx x? 0.,6(x) ™! K1(p), (B9)
4

where y = (1 +2x)¥2/6 and x is the photon energy in the particle rest frame. A simple fit
to the cross-section 0,(x) is found in Haug (1981). (The factor 3 72 in equation (31)
in S82 should be replaced by m3Y2.) Applying correction factors to the asymptotic limits
of equation (B9) gives expressions that are accurate to within 6 per cent,

L , 4n (1+27.10994%) (6 < 0.18) (B10a)
(e = ol + 1) Tettg &P (=2/6) x 16.169-541 {0.18<6<2) (B1Ob)
and
(4)ye = ny(ny + 1) créa(% In 216 — 28—_,)(1 +0.5/6)7! 6 =2). (B10c)

7)

B.3 PHOTON-PROTON PAIR PRODUCTION (yp = pe’e”)

The photon—proton pair production rate, (#1+)y, cm~3 s~} is given to 10 per cent accuracy
p pair p yp g P

by

(4)yp = nynp criomd exp (—2/6)(1 +0.96)~! ®<?2) (Blla)
and

28 92
(14)yp = nyny cria 5 In (206 +1.7) — > 6=2), (Bl1b)

obtained by applying fitting factors to the asymptotic expressions. The recent fit of the
cross-section by Stepney & Guilbert (1983) was used in the calculations. (Equation 40
in S82 should be multiplied by a factor 1/8.)

B4 COMPTON SCATTERING (ye = ve)

The Compton scattering rate, i cm ™3 s™1, is (with an appropriate change of integration

limits and cross-section) given by equation (B9). A Wien-averaged scattering opacity is
defined by

2u(®) = ;—j = (1, +1.) 0784(6), (812)
where

(1+56+0.40%H)7! B<1) (B13a)
g,(0)= 13_66_2(1n 26 %) (1+0.1/6)"! @>1), (B13b)
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and where the error is less than 4 per cent. The corresponding Wien-averaged scattering
optical depth, 7.y, of a region with a Thomson scattering depth 71 is given by

Tw = T1&(9)- (B14)

Appendix C: Mildly relativistic Comptonization

Previous attempts analytically to quantify moderate Comptonization (i.e. all photons do not
scatter into the Wien peak before escaping) at non-relativistic temperature were made by
Chapline & Stevens (1973) and Meier (1982). Neither work provides suitable results for
our purposes. Meier, for example, uses the non-relativistic Compton y-parameter (= 407%)
as the critical parameter determining whether the Comptonization is saturated (y > 1)
or not (¥ < 1). However, as Lightman & Band (1981) correctly point out, Comptonization
becomes saturated for y > In (8/x.on) (for xcon, see Appendix D), while being moderate
for 1<y < In(6/x.on). Non-coherent effects are unimportant for y < 1.

Here we choose to quantify moderate Comptonization at non-relativistic as well as
mildly relativistic temperatures by determining the fraction of photons that scatter into
the Wien-peak before escaping.

The number of scatterings N(x;, x;) that a photon of initial energy x; needs to reach a
mean final energy xy is approximately

In (x¢/x;)
In(1+46 +1662)° €D

which differs by at most 10 per cent from more detailed results (equation 2.6 in Guilbert,
Fabian & Ross 1982). Sunyaev & Titarchuk (1980) discuss the normalized probability
distribution P(V) for a photon to undergo N scatterings before escaping from a medium
having a specified spatial distribution of photon sources. Here we use the simple form
(cf. equation 9 in Sunyaev & Titarchuk 1980)

P(V) = (¢rD) ™" exp [-N/(Er7)], (€2)

where 77 is the Thomson scattering optical depth of the medium and 0.2<&<1 is a
factor dependent on the geometry and the distribution of photon sources (for quantitative
estimates we use £ =1/3). The fraction f(x) of photons of initial energy x; =x that will
reach final energies larger than 6 before escaping is then

MN(x;, xg) =

(%) ) dN'P(N") [ tn (6/x) ] (C3)
x) = =exp |— .
fN(x,O) P g3 1n (1440 +160%)
For photons emitted according to a normalized bremsstrahlung emissivity
Sy(e)dx =2 In (6/x) dx ( 0) ca
xX)dx=2———7 — Xm<x<0).
y In? (0/xm) x " (C4)
the fraction reaching final energies > 0 is simply
0
faw= [ dx ) 5= 2052 = 1+ 3D exp 1) (3)
*m
where
2 1n (1 + 40 +1662

In (6/xm)
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is the crucial parameter describing the transition (fg=0.53 for y, =1) between saturated
(y1>1; fg=1-2/(3y,) for y,> 1) and moderate (y; <1; fg=2y? for y; < 1) Comptoni-
zation. The non-relativistic energy amplification factor (used in Fig. 6) becomes

3 0
A=1+fp(y)~In*>—, (C7)
4 Xm
which have the correct limits (4 =1 for y <1 and 4 = (3/4) In* (6/x,) for y; > 1).

Similarly, for a normalized double Compton emissivity

dx

Soc(x) = In (6/xm) x

(xm <x<0), (C8)

the corresponding fraction becomes

8
foe(r) = f dx £() Spe(x) = 71 [1 — exp (= 1y (C9)

Xm

We take fg and fpc to represent the fraction of bremsstrahlung and double Compton
photons that are scattered into the Wien-peak before escaping. A few neglected effects at
mildly relativistic temperatures should be kept in mind: (1) the shape of Sg(x) differs
somewhat from equation (C4); (2) any scattering at x > 6! occurs in the decreasing
Klein—Nishina limit of the cross-section, which may (3) cause the scattering optical depth
at these photon energies to be less than unity (even though 71 > 1) in which case the spectral
shape is not Wien, but rather determined by the kinematics of the last scattering.

Appendix D: determination of x

Determining the photon energy, x,, below which the local spectrum is Planckian, requires
the introduction of four characteristic photon energies: Xg, Xaps Xt and xcon (cf. the
notation of Rybicki & Lightman 1979). The energy x,, at which the time-scales for a photon
to get absorbed or to get scattered are equal, is determined by

acs(x0) = aaps(¥o), (Dla)

where a.(xo) cm™! and a,p(xo) cm™* are the Compton scattering coefficient (equation 62
in S82) and the absorption coefficient (equation A25), respectively. At the energy x,ps the
absorption time-scale is equal to the time-scale for escape from a plasma having a scattering
optical depth 7. < 1. This condition can be written as

cs(Xabs) = @abs(X¥abs) Tes(Xabs)- (D1b)
The corresponding condition in a plasma having 7., > 1 determines xy,
acs(Xt) = Baps(¥) £ 75s(x0), (Dlc)

where the factor & is discussed in Appendix C. Finally, x.}, is the photon energy, where the
time-scale for absorption equals the time-scale for a photon to increase its energy due to
Compton scatterings. The number of scatterings needed is (40)™' at non-relativistic
temperatures and 1 at mildly relativistic temperatures. This is most simply described through

des(Xcon) = @abs(Xcon) (D1d)

min[1, 80]°

‘where following 1.81 an extra factor of 2 was introduced.
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At non-relativistic temperatures (0 less than, say, 1/8) 7. is equal to the Thomson
scattering depth rr and x, is equal to (i) x,ps for 77 < 1, (ii) x, for 1 < 71 < (£86)7Y2,
and (iii) xcon for 71 > (£80)7 2. At relativistic temperatures (8 > 1/8) we have (i) X,y = X1
for 7¢s< 1, and (ii) Xy =x0 =Xcon for 7¢>1. In our applications x, is always in the
Thomson limit and 7= 71 or a¢s = at = (14 + n_) 0. We determine x,, by solving

(1 +£77)
1+ ¢34 min[1, 860]°

ar= aabs(xm) (D2)

which reduces to equations (D1a)—(D1d) in the appropriate limits.
For 71 > 1 a Planckian is achieved in the emergent spectrum below x, only.
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